
TM

SYS-CON
PUBLICATIONS

JAVAJAVA
J a v a D e v e l o p e r s J o u r n a l . c o m

Volume:4 Issue:1, 1999

Tune into SYS-CON’s Java Radio:

Over 50 Exclusive
Live Interviews

from the Java Business Expo

Tune into SYS-CON’s Java Radio:

Over 50 Exclusive
Live Interviews

from the Java Business Expo

A Close Look:
Over 20 Award
Winning Java Products…

A Close Look:
Over 20 Award
Winning Java Products…

S
P

E
C

IA
L

 I
S

S
U

E

INSIDE THIS ISSUE:
Your personal access code to
JDJ’s Digital Edition

Read the most recent issues

FREE!

INSIDE THIS ISSUE:
Your personal access code to
JDJ’s Digital Edition

Read the most recent issues

FREE!

4th Year!

CELEBRATING

Best Java
Products

of the Year

Best Java
Products

of the Year

S
P
EC

IA
L AWARDS

IS
S
U
E!

FREE
CD!

FREEAWARD WINNING JBUILDER 2.0CD!

BONUS

Design Patterns
in a Java
Interpreter:
They Can Aid in the Design of
Complex Software

Design Patterns
in a Java
Interpreter:
They Can Aid in the Design of
Complex Software

Event
Management
& Enterprise
JavaBeans:
Make it Easy to
Write Your Java Applications

Event
Management
& Enterprise
JavaBeans:
Make it Easy to
Write Your Java Applications

2 • VOLUME: 4 ISSUE: 1 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Oracle
www.oracle.com/info/27

3VOLUME: 4 ISSUE: 1 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Protoview
www.protoview.com

4 • VOLUME: 4 ISSUE: 1 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Schlumberger
www.cyberflex.slb.com

Volume:4 Issue:1, 1999

J a v a D e v e l o p e r s J o u r n a l . c o m

TM

SPECIAL EDITOR’S AWARDS ISSUE

SYS-CON
PUBLICATIONS

Product Review
NetBeans Developer

by Jim Milbery pg.44

Straight Talking
If It Ain’t Broke–

Don’t Fix It
by AlanWilliamson pg.20

Widget Factory
JMaskField

by Claude Duguay pg.14

Cosmic Cup
Java Code Compilation

by Ajit Sagar pg.48

The Grind
Java – Into Its 4th Year

by Java George pg.66

Java Marketplace
pg.65

Java News
pg.62

JavaScript &
Web Techniques

Putting JavaScript
Bookmarks to Work

by Ken Jenks pg.60

JDJ Feature: Event Management & Brian Zimbelman

Enterprise JavaBeans Part 1 Architecture and
implementation of a local version of the event distribution system 8

Design Patterns in a Java Interpreter Gene Callahan
How they can aid in the design of complex software & Brian Clark 24

A Paradigm Shift in Distributed Computing Bhaven Shah
Enterprise JavaBeans: server-side computing like never before 38

Programming with I/O Streams Part 2 Anil Hemrajani
Practical uses of Java’s I/O streams that are well worth your time 52

Java –The Software Design E Ming Tan
Anybody can build an application, but can anybody design one? 58

SYS-CON Radio Interviews with Ethan Henry of KL Group
and Gregory Prokter of Slangsoft, as broadcast from the JBE 54

Award Winning Java Products JDJ’s 1999 Editor’s
Choice Awards have been selected. See what made the grade. 28

From the Editor
New Year’s Resolution

by Sean Rhody pg. 7

A Close Look:
Over 20 Award Winning Java Products…

Your Personal Acces Code to
JDJ’s Digital Edition: Best Java

Products of the Year
Your Personal Acces Code to
JDJ’s Digital Edition:

JAN9901

6 • VOLUME: 4 ISSUE: 1 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Computer
Associates

www.cai.com/ads/jasmine/dev

7VOLUME: 4 ISSUE: 1 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Welcome to 1999. This is typically the time I make predictions about the coming year.
Next year I’ll get this issue out and have a good laugh at all the things I missed – and the
few I actually get right. I’d be remiss in my editorial duty if I didn’t make some predictions.

This promises to be an interesting and tumultuous year. By the time you read this,
there will be fewer than 365 days left to fix Year 2000 issues. In most cases, if you haven’t
already started fixing your applications, you won’t finish. How this applies to us as Java
programmers is less clear. In many cases OUR code may be fine, but if it relies on other
systems or interfaces, or even legacy databases, we may still have time bombs on our
hands. I wish I could say confidently that we’ve all addressed these issues, but reports
indicate that the majority of the industry is behind schedule in remediation and repair.

Look for this to be a banner year for the EJB camp. I know of over a dozen compa-
nies, including all the major vendors, that are rushing to complete an EJB server. The
EJB specification is deliberately vague on a number of issues, so look for vendors to try
to differentiate themselves by adding value with different services and approaches.
Some vendors are taking a pure Java approach, while others are uniting CORBA and EJB
in a server that is implemented in native code, rather than riding on top of a JVM. Every-
one but Microsoft will have an EJB server – Oracle’s even putting it directly into their
database.

Don’t expect large-scale production applications using EJB until the end of the cen-
tury. (I love being able to say that!) There’s only one production server I know of as I
write this – by the time you read this there should be five or six. Given the lead time
required to tool up and actually write a large application, it will be the third or fourth
quarter before we see a proliferation of EJB apps.

Sun has won the first battle in the lawsuit with Microsoft. Although Microsoft could
yank support for Java in their browser, I expect that they’ll appeal the ruling and delay
changing their implementation for as long as possible. Though I’m not a lawyer, it seems
to me that Sun’s case is pretty strong, so I expect that Microsoft will eventually replace
the VM and get on with business. Anything else would drastically affect the usefulness
of the browser.

JINI will make small inroads this year, waiting for hardware and other vendors to
catch their collective Java breaths. Standards have been coming fast and furious from
Javasoft, but it takes a while…and a certain industry will…to make a standard more than
a document. JINI looks good, but there’s a certain amount of inertia with such standards
until sufficient mass builds around it. I don’t think JINI will take off this year.

Version 1.2 will become the main standard, supplanting 1.1.x. I see this as a year-end
reality, again waiting mainly for the browser vendors to come up to speed, particularly
with the new security model. The sandbox approach for applets was an easy out for
Microsoft and Netscape; implementing a real security model will require a greater
amount of effort on their parts. Look to Microsoft to have the first implementation, and
to try to corrupt the standard yet again by making the security system interact with NT
Domains. That’s completely my prediction; but given their current tack, it’s something I
think is likely to happen.

We’ve got an event-filled editorial schedule for this year – this month we’re focusing
on JavaBeans and tools for GUI development, in March we’re looking at middle-tier
servers and in May we’ll be focusing on hot new Java technologies. Visit our Web site at
www.sys-con.com for a more detailed look at our calendar and other JDJ daily features.

Finally, look for a revival of The Artist Formerly Known as Prince, riding a retro wave
of century madness on the basis of his song “Tonight We’re Gonna Party Like It’s 1999.”
I can already see the bad commercials and advertisements starting. Happy New Year,
and party on.

About the Author
Sean Rhody is the editor-in-chief of Java Developer’s Journal. He is also a senior consultant with Computer
Sciences Corporation, where he specializes in application architecture – particularly distributed systems.
He can be reached by e-mail at sean@sys-con.com.

New Year’s Resolution

FROM THE EDITOR

Sean Rhody, Editor-in-Chief
EDITORIAL ADVISORY BOARD

Ted Coombs, Bill Dunlap, David Gee, Michel Gerin,
Arthur van Hoff, Brian Maso, John Olson, George Paolini,

Kim Polese, Sean Rhody, Rick Ross, Richard Soley
Editor-in-Chief: Sean Rhody

Art Director: Jim Morgan
Executive Editor: Scott Davison
Managing Editor: Hollis K. Osher

Senior Editor: M’lou Pinkham
Production Editor: Brian Christensen
Technical Editor: Bahadir Karuv
Visual J++ Editor: Ed Zebrowski

Visual Café Pro Editor: Alan Williamson
Product Review Editor: Jim Mathis

WRITERS IN THIS ISSUE
Gene Callahan, Brian Clark, Claude Duguay,

Anil Hemrajani, Rob High, Ken Jenks, George Kassabgi,
Jim Milbery, Sean Rhody, Ajit Sagar, Bhaven Shah,

E Ming Tan, Alan Williamson, Brian Zimbelman

SUBSCRIPTIONS
For subscriptions and requests for bulk orders,

please send your letters to Subscription Department

Subscription Hotline: 800 513-7111
Cover Price: $4.99/issue

Domestic: $49/yr. (12 issues) Canada/Mexico: $69/yr.
Overseas: Basic subscription price plus airmail postage

(U.S. Banks or Money Orders). Back Issues: $12 each

Publisher, President and CEO: Fuat A. Kircaali
Vice President, Production: Jim Morgan
Vice President, Marketing: Carmen Gonzalez

Advertising Assistants: Robyn Forma
Jaclyn Redmond

Accounting: Ignacio Arellano
Graphic Designers: Robin Groves

Alex Botero
Webmaster: Robert Diamond

Customer Service: Sian O’Gorman
Paula Horowitz

Online Customer Service: Mitchell Low

EDITORIAL OFFICES
SYS-CON Publications, Inc.

39 E. Central Ave., Pearl River, NY 10965
Telephone: 914 735-7300 Fax: 914 735-6547

Subscribe@SYS-CON.com
JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is

published monthly (12 times a year) for $49.00 by SYS-CON
Publications, Inc., 39 E. Central Ave., Pearl River, NY 10965-2306.

Application to mail at Periodicals Postage rates is pending at
Pearl River, NY 10965 and additional mailing offices.

POSTMASTER: Send address changes to:
JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

39 E. Central Ave., Pearl River, NY 10965-2306.

© COPYRIGHT
Copyright © 1999 by SYS-CON Publications, Inc. All rights reserved. No part of this
publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopy or any information storage and retrieval system,

without written permission. For promotional reprints, contact reprint coordinator.
SYS-CON Publications, Inc. reserves the right to revise, republish and authorize

its readers to use the articles submitted for publication.

Worldwide Distribution by
Curtis Circulation Company

739 River Road, New Milford NJ 07646-3048 Phone: 201 634-7400

Java and Java-based marks are trademarks or registered trademarks
of Sun Microsystems, Inc. in the United States and other countries.

SYS-CON Publications, Inc. is independent of Sun Microsystems, Inc.
All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

SYS-CON
PUBLICATIONS

8 • VOLUME: 4 ISSUE: 1 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Making It Easy to Write Applications

EVENT
Management
& Enterprise
JavaBeans

JDJ FEATURE

by Brian Zimbelman

This is the first in a two-part
series on Event management in
large distributed applications built
on top of Enterprise JavaBeans
(EJB). This installment will cover
the architecture and the implemen-
tation of a local (single VM) version
of the event distribution system. The
second article will implement an
EJB version of the system that will
handle distributed events from
remote VMs.

One of the goals of Enterprise
JavaBeans is to make it easy to
write applications. Application
developers won’t have to under-
stand low-level transaction and
state management details, multi-
threading, resource pooling and
other complex low-level APIs. In
the nominal case this extrapolation
of the complexities of building
large, complex distributed applica-
tions has been accomplished well.
It doesn’t take much more effort to

implement an interface to a database table
object using EJB than it does to implement it
locally. If the EJB object is deployed using a
high-end EJB server, the object can be repli-
cated among multiple machines, providing
load balancing and fault tolerance with little
or no effort on the bean developer’s part.

The model that EJB is predicated on,
transaction-based processing, works well in
many circumstances, the most prominent
being client/server and n-tiered systems in
which the server layer manages some form
of persistent store. A number of other dis-
tributed application needs, however, don’t
fit as well into the EJB model. One of them is
event-based processing.

EJB still provides many benefits to appli-
cations that don’t directly match the transac-
tion-based EJB model. It just takes a bit more
understanding of what EJB provides for you
and what you have to do to get it to work.
Event processing happens to be an applica-
tion that begs for a middleware server but
doesn’t fall into the transactional model.

Events happen on a regular basis in our
daily lives. We get up, go to work and so on.

The same can be said of our software –
events happen regularly in our software
systems. The user logs into the application,
requests a new client’s data, etc. Some
events, such as handling an order, are han-
dled in the regular course of processing;
others, such as an I/O failure, are consid-
ered exceptional processing.

In large distributed systems a frequent
problem is that events often need to be
processed by a component that resides far
from the component that detected the
event. Maybe the middle tier detected that
the logon attempt failed, but a logging com-
ponent on the server needs to know about
this failure. On the other hand, the compo-
nent that detected the problem shouldn’t
need to know what components are inter-
ested in this specific event. For distributed
applications the event distributor needs to
handle both the receiving and the trans-
mitting of events to remote components.

PA
RT

1

9VOLUME: 4 ISSUE: 1 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

In reviewing the strengths and weak-
nesses of EJB and how they fit in an event
distribution subsystem, we can determine
the following:
• EJB allows remote components to send

events to the event distribution system.
• EJB doesn’t provide a mechanism for the

event distribution system to inform the
remote components that an event has
occurred (no callback mechanism).

• The EJB server provides all the features
required for a highly scalable, fault-toler-
ant, load-balanced application.

• EJB’s transactional model doesn’t help us
in the event distribution subsystem, since
events are not transactional in nature.

This article and its sequel will show you
one possible way to handle these vast require-
ments in a simple, straightforward framework
so that your application will be able to han-
dle events as easily as it handles normal,

transaction-oriented, multitiered processing.

What Is an Event, Anyway?
In most Java development circles, when

event handling is discussed it’s normally in
association with the AWT event model. In
the AWT model the component interested
in the event (consumer) simply registers
with the producer of events (producer).
The producer then iterates its list of inter-
ested parties (consumers), sending the
event to all who have registered with it.
This is a classic implementation of the
observer pattern, and it works well in an
application that runs in a single VM.

When an application begins to span mul-
tiple VMs, and components are created on
the fly without notification to other compo-
nents, the AWT model of tight coupling
between the consumer of events and the
producer of events gets to be unworkable.
How does the consumer know that a pro-
ducer of events has started on a machine
somewhere else on the network?

Consumers of events don’t care who
generated the event, just that the event
occurred. If a database is out of space, the
event consumer doesn’t care what process
detected that the database needs more disk
space. It just knows that its job is to notify
the administrator of this fact. Conversely,
the event producer doesn’t care who needs
the event, or what they’re going to do with
it, just that the event was detected and that
consumers may be interested in it.

The mediator pattern can be used to alle-
viate the tight coupling in the basic event
distribution model described above. To alle-
viate the tight coupling, a third component –
the event distributor – is added to act as a
mediator between the publisher and the
consumer. The producer of events publishes
the events to the distributor and thus does-
n’t know what objects are consuming the
events. It just knows that they have been
handed off to the proper component.

Consumers of events, on the other hand,
are notified when events they’re interested
in are received by the event distributor. The
consumers don’t know what object pro-
duced the event, just that it occurred.

Thus we have three roles that exist in an
event distribution system:
1. Event Producers: Components that

detect events and so inform the world
2. Event Consumers: Components that han-

dle events in some manner, e.g., passing
them on to other consumers, notifying
other applications or triggering some
processing in the application

3. Event Distributors: Distributors that
maintain a list of interested consumers
and pass the events to the consumers as
they are produced

By chaining event consumers together,
an application manages the consumption of
complex event hierarchies. Figure 1 shows
the major components of the event distrib-
ution system. The three listed above are
there, as well as the Event object itself.

Class Diagram
Figure 2 shows the class diagram for the

event distribution system implemented in
EJB. Notice that EventDistributor and
EventConsumer are interfaces and the
EventProducer doesn’t even exist! Anyone
can produce an event just by creating a new
instance of an Event object and calling its
publish method. The EventFilter class is an
abstract class that implements both Event-
Consumer and EventDistributor.

The normal mechanism for creating an
event consumer is to extend the EventFilter
class, providing a consume method that
performs some filtration on the events that
are passed on to the consumers that regis-
ter with it.

The Event, EventContext, EventCon-
sumer, EventDistributor and EventFilter
classes are the basic building blocks for
local event distribution. In this article I’ll
implement these classes and their inter-
faces. The second article will explain the
implementation of the rest of the classes
diagrammed in Figure 2. However, for com-
pleteness, I’ll discuss all of the classes here.

Enterprise JavaBeans
The distribution mechanism will be built

on top of the classes in EJB. The EJB imple-
mentation of the event distributor is mod-
eled as the EventController interface, which
extends the EventDistributor interface and
also provides the publish service so clients
from any VM can inform the event distribu-
tion service of new events.

The EventController is actually an inter-
face as well as a class on the client machine
(generated by the EJB compiler). The
EventController interface is implemented
on the server by the EventControllerBean
(as well as the EventControllerHome). With
these three classes and one interface, EJB
can provide the global interface to all
clients who wish to publish events or con-
sume events that meet certain criteria.

As I mentioned before, EJB has a severe
limitation in the area of callbacks, so I’ve
designed the class RemoteEventConsumer,
which encapsulates the logic needed to
provide a callback for the server when it
needs to notify a consumer in another VM
of the event. The last class shown in Figure
2 is the EventHelper class, which is used as
a holder of two static methods that make
the application programmer’s job much
easier.

I’m not showing the relationship of
Event to the other classes in the diagram as
I don’t believe it adds anything and it cer-
tainly clutters up the rest of the details.

Event Contexts
To delineate between different event

types, one can create many subclasses of
Event, or a type attribute can be
added to the Event object. Imple-
menting a large number of classes
just to identify types of events is a
design that causes application bloat.
However, if different events have a
vastly different state as well as behav-
ior, they are best implemented as a
class hierarchy.

The design doesn’t require either
method to be implemented, and you
can determine which method is best
for your application. The sample
implementation that I’ll go over later
will use an EventContext object to
identify the event type. It will also use
a dynamic set of attributes (imple-
mented as a hashtable) to contain
whatever data is required for this
type of event. While this implementa-
tion meets my application’s needs,
yours may vary.

Generally, events will exist within
a context. For example, an invalid
logon attempt is a specific type of
security violation. This design
requires that when a consumer is
added to the event distribution sys-
tem, its context has to be passed as
an argument to the addEventCon-
sumer method. For the example code
I’ll model the context in a string rep-
resentation based loosely on URLs.
Your application’s needs may vary
and you’ll want to change how the
context is represented. The URL
approach works well for my needs as
it’s universally recognized and easy

to parse.
The event context hierarchy will match

the set of event types produced in your
application. For my application a subset of
the tree looks like this:

Security
Security.Breach
Security.Breach.InvalidLogin
Security.IllegalAccessAttempt

Resource
Resource.Database
Resource.Database.Corrupt
Resource.Database.InvalidAttempt
Resource.Database.NotFound

Chart
Chart.Update

Inbasket
Inbasket.NewMessage
Inbasket.DeleteMessage

Notice that the first two categories of
events (Security and Resource) are general-
ly considered errors and would for the
most part be sent from the producer to
some sort of administration tool (logging
device, paging device, etc.). However, the
last two types of events (Chart and Inbas-
ket) are notification from the server to the
client that some interesting data has been
updated in some manner.

The EventContext class is constructed
by passing in a string containing one of
these URLs; it provides all the functionality
needed for the rest of the application to
obtain all or some part of the context. This
allows the rest of the application to be
abstracted from the need to understand
and parse event contexts.

Why This Design?
As with any design, there are advantages

and disadvantages. Among the advantages:

• It’s simple. Simple solutions make the
design easier to understand, implement
and maintain.

• It takes full advantage of EJB server
strengths. It allows the EJB server to
replicate the object and provide the fault
tolerance, load balancing and other high-
end server functionality.

• It decouples the consumer from the pro-
ducer. When two components are tightly
coupled, the system is considered frail
and brittle. Frail systems are hard to
extend, and make maintenance difficult
at best – impossible at worst.

The most obvious disadvantage of this
design is the central distributor compo-
nent. Any design that has a single point of
failure (as this design appears to have) is
suspect. However, with the capabilities of
EJB servers, this single point of failure is
easily mitigated. The EJB server itself can
replicate the distributor, thus reducing the
risk of a single point of failure.

Two weaknesses in standard EJB are
exposed in this design:
1. It doesn’t handle nontransaction-based

applications well (which is to be expect-
ed of a transaction-based standard).

2. It doesn’t provide callback functionality
by default.

In EJB parlance, one would remedy these
weaknesses by building a custom EJB con-
tainer that fits into the EJB server of choice.
This article chooses another direction, that
of working within the existing containers of
the EJB Server and providing the extra func-
tionality in the bean object itself.

Proposed Solution
Enough talk. Let’s write the code and see

how it works. For the rest of this article I’m
going to describe how the base classes
needed for event distribution in this model
work. (I won’t discuss the networking or
EJB aspects of these classes until the next
article.)

Interfaces
Two interfaces, EventConsumer and

EventDistributor, need to be implemented
first. Listing 1 shows how the EventCon-
sumer interface requires the consume
method. An important note is that an Event-
Consumer extends the EventListener inter-
face of Java.

The EventListener interface, a little-used
interface provided in the java.util package,
doesn’t implement any methods. Rather, it
tags the interface or class as one that can
be used by an EventListenerList derivative.
The EventListenerList class, provided in
the com.sun.java.swing.event package, con-
tains all of the mechanisms needed to main-

http://www.JavaDevelopersJournal.com10 Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 1 1999

Figure 1: Event distributor

EventPublisher

EventPublisher

EventPublisher

EventPublisher

EventConsumer

EventConsumer

EventConsumer

EventConsumer

EventDistributorEvent

Event

Event

Event

Event

Event

Event

Event

11VOLUME: 4 ISSUE: 1 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

EnterpriseSoft
www.enterprisesoft.com

http://www.JavaDevelopersJournal.com• VOLUME: 4 ISSUE: 1 1999Java DEVELOPER’S Journal12

tain and process callback lists.
Listing 2 has the code for the Event-

Distributor interface. This interface,
also very simple, has two methods –
one to add a new consumer and anoth-
er to remove a consumer from the list.

Event Filter Abstract Class
The code for the EventFilter class

is shown in Listing 3. The class uses
the EventListenerList class from
swing (discussed above), but the rest
of it is very straightforward. The con-
structor simply creates a list object to
handle the consumers that will regis-
ter with this object. The method con-
sume is the abstract method that chil-
dren will have to implement. The
addEventConsumer method and the
removeEventConsumer methods
manage the contents of the EventLis-
tenerList object. Finally, a protected
method called fireEventConsumers
handles the actual sending of the
event to all consumers currently reg-
istered in the list object. Derived
classes will want to call this method if
the event is deemed to be of interest
to the consumer’s children.

Event and EventContext Classes
Listing 4 contains the code for the

Event class. The constructor builds
the EventContext object and creates a
hashtable object to handle the attrib-
utes to be added to this Event.

The methods getAttributeByName

and setAttributeByName are used to assign
attributes a value and obtain the value from
them. They both operate on a string for the
attribute name and an object for the
attribute value.

The method isA takes a string that con-
tains a context portion and returns a Boolean
indicating whether this event is of that type.

The publish method of the Event class is
left empty at this time. It will be implement-
ed when we get to the distributed version
of the application. For this implementation
the test drivers simply call the publish
method on the distributor.

The EventContext class is shown in List-
ing 5. Its constructor verifies that the URL
passed in is of the proper type, and initial-
izes its internal variables. The other two
methods of importance are getComponent
and nextComponent. The former returns a
string with the current component of the
URL. A component is defined as ending
with either a forward slash (/) or a ques-
tion mark (?) character. The forward slash
is to separate static context information
(e.g., Chart Update, FailedLogin). The ques-
tion mark is used to separate dynamic
information (much as it is in many CGI-
based URLs). An example of this would be
the identifier of the chart that has been
updated.

Distributor
Listing 6 contains the BasicDistributor

class (the real distributor will be provided
as an EJB object in the next article but this
one will work for local distribution). There

are only two points to notice about this
distributor. The first is that it is a subclass
of EventFilter. The second is that its pub-
lish method simply calls fireEventCon-
sumer.

Consumers
Listings 7 through 9 show three con-

sumers. Two handle events of type “Secu-
rity” (SecurityConsumer and FailedLogin-
Consumer); the third handles events of
type “Chart Update.” All three consumers
print a message when they receive an Event
whose context matches the one in which
the consumer is interested. The Failed-
LoginConsumer performs a second check
(the attack method) to see whether an
oversimplified attack to break into the sys-
tem is taking place. If so, it prints a message
that an attack was detected.

Test Driver
Listing 10 contains a test driver to test

these classes. It first creates an instance of
the BasicDistributor class. Then all three of
the consumers are registered, and finally
some Events are created and published.
The standard output generated by the test
driver is shown in Listing 11. It should be
run with and without the sleep call com-
mented out to ascertain that the FailedLo-
gin consumer works as described.

Conclusion
This code shows how simple it is to

implement the basic functionality of this
design. In the next segment I’ll show how to
extend this design on top of EJB so clients
running in VMs distributed across the net-
work can be both event consumers and
event producers.

References
Matena, Vlada et al. (1998). Enterprise

JavaBeans 1.0 Specification, Sun Microsys-
tems, Inc., Palo Alto, CA, HYPERLINK
http://java.sun.com/products/ejb/docs.html;
http://java.sun.com/products/ejb/docs.html.

Gamma, Helm, Johnson and Vlissides
(1995). Design Patterns. Addison Wesley.
ISBN 0-201-6336-2.

About the Author
Brian Zimbelman is a snowboard instructor who
moonlights as a senior architect at CyberPlus
Corporation. He has been working on distributed
systems since 1984 in C, C++ and now Java. Brian
can be reached at bzimbelman@cyberplus.com.

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

bzimbelman@cyberplus.com

Event
id
context: EventContext
data

getAttributeByName()
isA()
equals()
publish()
setAttributeByName()

EventContext
getComponent()
nextComponent()

<<Interface>>
EventDistributor

addEventConsumer()
removeEventConsumer()

<<Interface>>
EventConsumer

consume()

EventHelper

<<Interface>>
EventController

addEventConsumer()
removeEventConsumer()
publish()

Client::EventController
addEventConsumer()
removeEventConsumer()
publish()

EventControllerBean
addEventConsumer()
removeEventConsumer()
publish()

removeEventConsumer()
publish()

EventControllerHome
create

RemoteEventConsumer
consume()
addEventConsumer()
removeEventConsumer()

EventFilter

uses

uses

creates

creates

Consume()
addEventConsumer()
removeEventConsumer()

Figure 2: Event object model

13VOLUME: 4 ISSUE: 1 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

NetBeans
www.netbeans.com

When you write user interfaces, you
inevitably have to collect information from
text fields and validate the data before you
use it. There are several ways of handling
validation. You can verify the text as the
user exits the field by watching for lost
focus events, or you can wait for the user to
dismiss a window or dialog box by pressing
a button, thereby validating all the fields at
once. Both approaches are useful, but they
can also lead to complex scenarios. Provid-
ing appropriate feedback and cursor posi-
tioning when invalid data is entered can
often become complicated. Often, a better
approach is to validate the information as
it’s being entered by the user – a technique
known as keystroke validation.

This month’s JMaskField goes much fur-
ther than restricting the user to valid key-
strokes by supporting the following
advanced features:
• Customizable Rules: We use a regular

expression-style syntax to define rules
that determine whether a given character
is acceptable for each position in the
field. A mask can be defined with a mix of
literal characters and validation rules.

• Macro Characters: We can make it possi-
ble to associate any character with an
expression in order to support a more
compact notation. For example, “#”
might be assigned to an expression like
“[0-9]” to represent numerical values.

• Cursor Positioning: The cursor is posi-
tioned intelligently after keystrokes, skip-
ping literal characters that don’t need to
be typed in by the user.

• Template Character: You can define any
character as a visual cue to indicate posi-
tions where the user hasn’t yet typed or
where a character was deleted. The
default template character is the under-
score (“_”).

Figure 1 shows the classes we’ll be
developing and how they relate to each
other. While this may seem like a lot, you
can see by the diagram that most of the
classes address tokenizing and parsing the

mask. Once parsed, the validation is pretty
straightforward and is handled by our
extension to the PlainDocument class.
JMaskField extends JTextField and merely
adds some cursor movement code to make
it more user-friendly.

JMaskField provides the high-level inter-
face you’ll use in your applications. In prac-
tice, you can provide a mask and template
character in the JMaskField constructor
and check the field output for template
characters to determine if they were fully
entered by the user at runtime.

Tokenizing Masks
To process the field mask we need to

tokenize the text and build a parse tree
from the token list. The parse tree elements
are used to match the characters as they’re
being typed by the user. The Java class
library includes two
out-of-the-box tok-
enizers: StringTok-
enizer and StreamTo-
kenizer. While these
are useful, they just
don’t provide suffi-
cient information
when telling the user
where the problems
have occured. So
we’ll create a more
flexible solution.

The MaskTokeniz-
er produces a list of
MaskToken elements.
And, this MaskToken
class, as seen in List-
ing 1, has two mem-
ber variables: pos, an
integer value that
stores the offset from
the beginning of the
tokenized text, and
text, a string value
that stores the actual
token. Because many
tokens are single
characters, we over-

load the equals method to handle both
string and char inputs. This makes parsing
easier when we need to determine what
type of token we’re dealing with.

Listing 2 shows the MaskTokenizer
class, which has a single constructor that
requires two arguments: an include string
that identifies all delimiter characters
which should be returned as tokens, and an
exclude string that identifies all delimiter
characters which shouldn’t be returned as
tokens. A math tokenizer, for example,
might use an include string like “+-*/”and an
exclude string like “ ”. This would return
any nonspace sequence and consider the
math operators separate tokens.

The MaskTokenizer provides hasMore-
Tokens and nextToken methods, just like
the Java tokenizers, but nextToken returns
a MaskToken instance. In addition, we pro-
vide an ignoreToken method to push back
the current position after reading a token.
This is useful with most parsers, which
sometimes need to look ahead before deter-
mining whether the next token is relevant.

Document

MaskElement

Interface

PlainDocument

JMaskField

MaskLiteral

MaskSet

MaskCondition

MaskExpression

MaskDocument MaskPattern

MaskTokenizer MaskToken

MaskMacros

MaskParser MaskException

Class is a contains uses

Figure 1: JCMaskField classes

[0 1 2 3 4 5 6 7 8 9

[0 - 9] - [

-

0 - 9]

] - [0 1 2 3 4 5 6 7 8 9

Figure 2: Mask expansion

Java DEVELOPER’S Journal14 • VOLUME: 4 ISSUE: 1 1999 http://www.JavaDevelopersJournal.com

JMaskField
These advanced features make your

user interfaces more user-friendly
by Claude Duguay

15VOLUME: 4 ISSUE: 1 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Intuitive
www.optimizeit..com

Java DEVELOPER’S Journal

Regular Expressions
Regular expressions are used heavily in

languages like Perl and AWK, and are often
applied by programmers either through
command line searching with the GREP util-
ity or in flexible search/find capabilities
exposed in modern user interfaces. While
these are often considered too complicated
for average computer users, they fit quite
nicely into the savvy programmer’s bag of
tricks.

Table 1 lists the characters we’re inter-
ested in. Regular expressions have a couple
of reserved characters that represent the
beginning and the end of a line, as well as
sequence modifiers. These aren’t directly
applicable to our solution, so they’re not
included in this table. If you’re familiar with
regular expressions, you’ll notice that
we’ve changed the character for NOT oper-
ators. This is nothing more than artistic
license. Naturally, if you prefer something
else in your application, you’re free to
change it to whatever you like.

We’ll take a look at the syntax in a
moment. In the JMaskField widget, a mask
is provided in the form of a string. The
string can be a mix of literal characters –
which may not be edited – and rules
expressed using our regular expressions
subset. To distinguish between rules and
literals, we delimit rules with curly braces.
Table 2 shows a few valid masks with a brief
explanation for each.

The last example shows how macros can
be used to make this syntax more compact.
Let’s take a quick look at the parser.

Parsing the Rules
Once the text has been tokenized, we

can organize it by constructing a parse tree.
When errors are encountered, we throw a
MaskException (as shown in Listing 3) to
tell the caller what was expected and the
text position where the error occurred.
This makes it a lot easier to deal with syn-
tax errors before they become problems.
The text offset position is especially infor-
mative and makes addressing any occur-
ring problems much easier.

The rule parser uses several support-
ing classes to represent the resulting
item list. Each of these implements the
MaskElement interface from Listing 4,
which enforces the use of a toString and
a match method. The toString method is
useful for debugging, so we can see the
structure by just writing it out. The
match method tests a character for
validity and will get used in the docu-
ment class we’re implementing later.

Here’s a quick look at the syntax using
the BNF format:

<element> ::= '{' <condition> '}' |
<literal>

<condition> ::= <expression> [<conjunction>
<condition>] <conjunction> ::= '&' |

'|'
<expression> ::= '(' <expression> ')' |
<character-set>

<character-set> ::= '[' ['!']
<characters-list> ']'

BNF allows us to represent the syntax in
a manner which is very close to the way we
need to program the parser. The produc-
tions above can be easily described in Eng-
lish. Each production involves an element
on the left and options on the right. In BNF
the options are separated by a “|” charac-
ter and may include optional elements that
are delimited by square brackets. Thus the
first production means an element is either
a condition (delimited by curly braces) or a
literal.

The second production means a condi-
tion is an expression, followed by an
optional conjunction and another condi-
tion. The conjunctions are either the or
(“|”) character or the and (“&”) character.
The expression production is there primar-
ily to allow parenthesis-delimited nesting –
exactly the way mathematical expressions
can be given precedence by wrapping them
in parentheses. If no parenthesis is present,
we expect a character set.

We consider a character set to be a spe-

cial case in our parser by expecting a set to
be delimited by square brackets and to be
optionally negated, using the “!” modifier.
Character ranges aren’t handled as tok-
enized elements. It’s easier to consider any-
thing tokenized as a single character
sequence and to process sets with the pars-
er. When we run into a set, we traverse the
characters and handle dash (“–”) delimited
character pairs by dynamically expanding
them so that the resulting set is explicit.
This makes later matching more efficient.

Listing 5 shows the MaskLiteral class,
which represents literals and stores the
character internally. The match method
simply does a direct comparison with the
test character. Macro characters are con-

(# # #) # # # - # # # #
Mask

(_ _ _) _ _ _ - _ _ _ _
Presentation

(1 2 3) 4 5 6 - 7 8 9 0
Input

Figure 3: Mask presentation

Table 1: Reserved regular expression characters

Description

() Precedence delimiters

[] Character set delimiters

- Set range delimiter

! NOT prefix operator

& AND operator

| OR operator

Any other character

Character literal

Table 2: Valid mask examples

PRIVATE Mask Description

"{[A-Z]}{[a-z]}{[a-z]}{[a-z]}" One uppercase and three lowercase letters

"{[!0-9]} {[!0-9]} {[!0-9]}" Any three nonnumerical characters, separated by spaces

"{[02468]}{[13579]}" Any even number followed by an odd number

"(###) ###-####" A phone number when macro '#' is defined as "[0-9]"

Java DEVELOPER’S Journal16 • VOLUME: 4 ISSUE: 1 1999 http://www.JavaDevelopersJournal.com

17VOLUME: 4 ISSUE: 1 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Inetsoft
www.inetsoftcorp.com

sidered literals until they’re interpreted at
runtime. This allows us to change the
macro definitions without requiring the
mask to be parsed again, thereby increas-
ing our flexibility.

The MaskSet class is shown in Listing 6.
A set of characters is made explicit by the
parser, expanding hyphenated ranges into a
string list. The parser automatically han-
dles inverted ranges if the value of the
rightmost character is less than the value
of the leftmost character. The only addi-
tional information required in our MaskSet
representation is the negation marker if a
NOT operator was used and stored as a
Boolean value.

Listing 7 shows the MaskExpression
class. Expressions are just wrappers
designed to handle precedence. The match
method calls the encapsulated MaskEle-
ment at comparison time. MaskCondition is
more interesting. Listing 8 shows how it
stores a Boolean value to indicate whether
an AND or an OR conjunction is used. We
keep a couple of constants around to make
the parser code more readable. The match
method uses the Java logical and (“&”) and
or (“|”) operators to resolve the function.
The left and right arguments are resolved
by calling their own match methods.

The MaskParser, shown in Listing 9, is
implemented as a separate class so it can
be used by both the MaskMacros and the
MaskDocument classes. There isn’t enough
room here to say much about recursive
descent parsers, other than the fact that
they operate much as the name implies.
They use recursion to build a tree structure
and descend to parse any nested struc-
tures. As mentioned earlier, the structure of
the methods in MaskParser closely resem-
bles the structure of the BNF notation used
to represent the syntax.

Extending the Model
One of the objectives I had when I decid-

ed to implement the JMaskField control
was to make it both powerful and easy to
use. This is one of those standard program-
ming dichotomies that’s difficult to resolve
and requires some thought. The best
option I was able to identify was to make
the syntax for defining rules ultimately flex-
ible. That makes it powerful, providing a
mechanism for abstracting those rules in
simple form. This mechanism is implement-
ed in the form of character macros.

Figure 2 shows how a simple mask gets
expanded to a parsed expression, and final-
ly to explicit character sets.

Listing 10 shows how the MaskMacro
class is really little more than a hashtable
that stores an association between a given
character and a MaskElement representing

the rule(s) to be applied.
When the MaskDocument in
Listing 11 runs into a literal
character, it checks to see if
there’s a rule associated with
it in the MaskMacro model.
While it’s always possible to
define masks using the curly
brace syntax, you can see
that it’s much easier to
define your own rules and
assign them to macro charac-
ters.

The Document Model
The MaskDocument class

extends the PlainDocument
class in the JFC and can be
assigned to any JTextCompo-
nent. The JMaskField class is
presented in Listing 12 and
extends JTextField, imple-
menting additional behavior
to handle intelligent cursor
movement. Let’s take a quick
look at the MaskDocument
class before we cover the
JMaskField code.

To provide visual feedback, we generate
a template for the mask expression. To
keep things simple for the user, we’ll use an
underscore as a placeholder for nonliteral
characters. The underscore is the default
template character, but you can easily
change it if you prefer something else. Fig-
ure 3 shows how the mask presentation and
user input parallel each other.

The MaskDocument class implements
supporting methods to handle the template
and to make character matching easier, but
it primarily implements the remove and
insertString methods required by the JFC
Document interface. The Document inter-
face has two methods we have to override
in order to get the behavior we need.

The insertString method is called any
time new data is entered in the text field,
typically after every keystroke. The remove
method is called whenever text is deleted.

The insertString and remove methods
can pass several characters at the same
time, as would be the case in cut or paste
operations. To support these, we break
each string into single characters and han-
dle them recursively. The net effect is that
a parse operation may not complete if
some of the characters don’t match, but
the field will still handle as many charac-
ters as possible. Each character, processed
individually, is tested by the match method
and allowed to replace template charac-
ters in the insertString method. A charac-
ter is replaced by a template character
when being deleted in the remove method.

Summary
Figure 4 shows JMaskField in action. The

Phone and Postal Code fields have already
been entered and the other fields demon-
strate a mix of literal and template charac-
ters that provide visual cues to guide the
user through a successful experience.
When inappropriate characters are typed
in, the user hears a beep and the character
is rejected.

JMaskField provides a flexible mechanism
for constraining character entries in a text
field. Because it uses standard Java strings,
any valid character pattern can be applied to
define the data mask. The simple, regular,
expressionlike syntax lets you define arbi-
trary character rules. Extending this model
to support character macros adds even more
flexibility and the template view provides
useful feedback for the user. Together, these
elements provide you with yet another tool
to make the user experience as pleasant as
possible. Use it in good health.

About the Author
Claude Duguay has been programming since 1980.
In 1988 he founded LogiCraft Corporation, and he
currently leads the development team at Atrieva
Corp. You can contact him with questions and
comments at claude@atrieva.com.

claude@atrieva.com

Figure 4: JMaskField at work

http://www.JavaDevelopersJournal.comJava DEVELOPER’S Journal18 • VOLUME: 4 ISSUE: 1 1999

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

19VOLUME: 4 ISSUE: 1 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

4th Pass
www.4thpass.com

http://www.JavaDevelopersJournal.comJava DEVELOPER’S Journal20 • VOLUME: 4 ISSUE: 1 1999

HALT! Just stop right there! You’ve proba-
bly stumbled across this column while merri-
ly thumbing through this magazine, and
you’re now wondering what this lump of
words is all about. You may have noticed this
column in previous issues but couldn’t be
bothered to read it. After all, who’d blame
you, since there aren’t any pictures or fancy
diagrams to support it. It’s got to be dull,
right?

But why not be daring? Go on, lend me 10
minutes of your time and let’s see if I can
entertain you as I give you some Java enlight-
enment. If you don’t like it, then hey, I won’t
hold it against you. We won’t even speak of it
again. Deal?

Well, last month saw me in Tokyo. Again. I
was there giving a series of talks on the mer-
its of using Java at the server side. The talks
were geared around Java Servlets and the
benefits they can offer over and above alter-
native technologies such as CGI or Microsoft
ASP. The presentations highlighted and
talked listeners through many of the large-
scale case studies that we (here at N-ARY Lim-
ited) have installed. At the end of each talk
there was an in-depth question-and-answer
section. And that’s where the fun began.

But before I continue on to the core of this
month’s column, it’s time for that character-
istic-parallel thing to occur. This is where I
take a personality trait and apply it to our
consciousness of Java. This month I‘m going
to go for inquisitiveness – the trait of continu-
ally asking questions.

Inquisitiveness is something we’re familiar
with when we’re young: “Mum, why is the sky
blue?” and “Mum, where do babies come
from?” As soon as we develop the ability to
speak, we start learning. Learning is achieved
by looking and pointing at things and contin-
ually asking what must seem like silly ques-
tions to our parents. It’s a shame, but most of
us lose this quality somewhere in puberty.

Back to Japan
So after a two-hour presentation on the

merits of Java Servlets, I was all geared up for
a whole host of questions on the Servlet API.
Maybe some questions on how to handle spe-
cial HTTP requests or about different
browsers. Maybe even a question on how the

Servlet API is used within application servers.
But what I thought and what I was asked were
two different things. I think, in all honesty, the
percentage of questions asked on the Servlet
API was around the 5% mark. The remaining
95% was on basic Java principles. I thought:
How wonderful.

As discussed in this very column a num-
ber of issues ago (get the back catalog – a
sound investment!), the software industry in
Japan isn’t as far along as its consumer elec-
tronics. They’re still very much at the early
adopter’s stage of development – which is
actually good. They haven’t suffered the
same side effects of continually moving JDK
versions as we have, since the majority of
them started on 1.1.

So there I was, promoting the whole Java
Servlet thing, hoping to persuade people to
not go down the CGI route of development,
and what they were asking about was funda-
mental Java. I met a lot of developers in Japan
and nearly all of them asked me the same
question, “What do you use to debug
servlets?” This line of questioning surprised
me. At first I thought it was just the one time,
but when the same question was posed a sec-
ond and then a third time, I thought: Okay,
maybe we’ve missed something in our teach-
ings.

The answer I gave them was simple and
took many of them back a bit as they thought
I was joking: use System.out.println(...). This
is the most sophisticated debugging tool I’ve
ever used. It holds many advantages over
many other techniques, in that it’s complete-
ly portable and it doesn’t matter which virtu-
al machine you’re running on – or which plat-
form. It will work. It’s simple – nothing too
complicated and you don’t need to worry
about exceptions. In a forever increasing
world of complexity, the ability for simplicity
to shine through still exists.

Back in my old days of coding C and C++,
and after my university years, I had the plea-
sure of working with a mentor who taught me
a thing or six about real developing. The
months I spent with him changed my whole
outlook on development forever. I thought:
Why couldn’t they have taught this in univer-
sity? Dave Forth was his name, and he
believed that debugging tools were only there

for lazy developers. Now at the time I was a
big fan of Turbo C and its inline debugger. The
ability to trace through execution steps was a
godsend for me. So, to have this man turn my
world upside down by dismissing debugging
tools, I thought: Oh no, I’m lost now!

But you know, the more I thought about it,
the more he was right. For example, you don’t
see house builders using debugging tools.
The house either stays up or comes down
after the first storm. After a house has been
erected, the master builder doesn’t clear the
building site and start up a house debugger.
(What a house debugger might actually look
like staggers the imagination.) So how can the
builder be sure the house won’t fall down?

Well, one of the new waves that’s gripped
the developing community in recent years is
that of object orientation. We’ve all experi-
enced objects – you can’t develop Java with-
out being aware of them. One of the goals of
an OOD (object-oriented design) system was
to reduce the complexity of a system and
thus make it less prone to errors. A good OOD
system shouldn’t require that much debug-
ging. After all, you’re developing small units
that can be individually stress-tested. But it’s
not a new way of operating. The computing
industry has just taken an old idea, given it a
fancy name and heralded it as the new and
improved way software should be coded.

Industries have been practicing OOD for
hundreds of years. Let’s look at our builder
again. It’s a perfect example of OOD in the real
world. The builder doesn’t build each indi-
vidual brick. Nor does he test the strength of
each brick. He’s already bought into the tech-
nology (yes, even a brick has technology, i.e.,
the technology to engineer it to the standards
that are suitable for building). Now he places
these bricks together in the manner in which
the bricks’ API has determined for how it’s
going to interact with other bricks. Anyone
who’s played with Legos or any other small
building blocks when young knows that to
build a strong wall, you don’t place the blocks
one on top of each other. Instead, you inter-
lace them. This is a brick API (or definition) of
how you can best use a brick.

The builder uses many such materials,
and it’s the skill and knowledge of the builder
that determines how bricks and other materi-
als go best with one another. But he knows
that once the brick is put in its place, he does-
n’t need to worry about it again, i.e., he won’t

If It Ain’t Broke – Don’t Fix It

STRAIGHT TALKING

A look at builders, debuggers –
and the nature of inquisitiveness

by Alan Williamson

21VOLUME: 4 ISSUE: 1 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

DevelopMentor
www.develop.com

• VOLUME: 4 ISSUE: 1 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

need to debug that brick at a later date. Grant-
ed, there are builders who aren’t particularly
skilled at this, and I’m sure some sort of
house debugger would be a godsend to them.

But what if something does go wrong with
the house? What can the builder do? Well, an
experienced builder would know what to look
for in order to fix the problem. He’d spot the
telltale signs. Well, there’s no reason why a
developer can’t operate on the same princi-
ple.

But it’s relatively easy to find problems in
a house. You can walk around it, get inside it
and discover the problems. What can a devel-
oper do? In order for the developer to be able
to fix a problem, he must first try to find it.
But many fixes only solve the symptoms – not
the problem. For a developer to see what’s
going wrong, he must see how sections react,
how variables are changed.

And you can do this with a debugger....
Yes, you can – there’s no denying that. But

as the physicist Leo Szilard questioned in
1929: “Can you know all about the world with-
out changing it?” He was talking about ther-
modynamics at the time, but the same thing
applies to our world. It’s like any measuring
tool – it’s never completely impartial. The
very presence of the measuring tool creates a
disruption in the natural flow. For example, a
small turbine placed in a stream to measure
flow rate will offer a small amount of resis-
tance to the stream. Granted, this small resis-
tance may never be detected, but just
because it can’t be measured doesn’t mean
it’s not present. Software debuggers are the
same way.

Have you ever tried to solve a memory
leakage problem or a threading problem with
a debugger? Ever wondered why you could
never reproduce the problem within the
debugger, but as soon as you ran it on its own
things suddenly started crashing? Or even
worse, you’re developing as you go along
within the debugging environment, only to
experience weird and wonderful crashes
when it’s run stand-alone?

This is because the very presence of the
debugger has introduced a new unknown ele-
ment to your environment. An unknown con-
stant that you’ve no control over is infecting
your world. It sounds a bit drastic and melo-
dramatic, and it won’t be the case for every
single bug you’re trying to track, but why take
the risk?

Back to our builder. Once he’s spotted the
error, fixing it is generally not a major deal,
unless, of course, he’s spotted a fundamental
flaw in the overall design of the system. For
example, maybe using paper-based bricks for
the foundation wasn’t that great an idea after
all! The developer needs to gain the same
insight.

The simplest way for the developer to dis-
cover problem areas is to try to insert one of

the least intrusive tools possible:
System.out.println(...). For example, Java has
given every object the ability to print to string
through the java.lang.toString() method. But
how many of you actually override this sim-
ple method in your classes? I’d guess very
few. To those of you who don’t, why don’t
you? You can place a whole host of useful
information about the classes state in here,
so should the day come that you need to
print out some information, you can simply
make a call to your toString() method without
worrying about littering your code full of Sys-
tem.out.println(...) statements.

It’s this simplistic view of looking at things
that generally yields the quickest results. You
have to be inquisitive with your code. Learn
to ask it silly questions and who knows, you
may be surprised at what answers come
back. As the textbooks say, it’s about 95%
design and 5% coding (...and 70% debugging!).
By using the inherent tools Java has provid-
ed, we can hopefully remove this unwanted
70% – or at least reduce it significantly.

Book Review
Since this is the beginning of a new six

months, I thought I’d introduce a new sec-
tion to the bottom of each column. Over the
last six months we’ve addressed many dif-
ferent issues ranging from development to
running a complete Java business. I’m a sin-
gle voice in a sea of noise, so I’m going to
recommend a book to you each month.
Each month the book will have relevance to
a column that was previously in my
“Straight Talking” series.

To start this mini book review off, I’m
going to recommend a book I purchased on
University Drive in Palo Alto while in Cali-
fornia earlier this year. This book comple-
ments my past column on start-ups, (JDJ
Vol. 3, Issue 10). Losing My Virginity by
Richard Branson is an autobiography show-
ing the rise of Britain’s top businessman and
his empire, Virgin. It’s a fascinating read and
very inspirational to anyone thinking of
starting a new business venture. Branson is
extremely honest, admitting to his mistakes
and how he’d probably do things differently
if he had the opportunity.

It was interesting to read how a noncom-
puting empire was built with the same ethic
that many developers hold dear to their
hearts – business should be fun, and not all
shirts and ties.

About the Author
Alan Williamson is CEO of N-ARY Limited, a
UK-based Java software company specializing solely
in JDBC and Servlets. He recently completed his
second book, which focuses on Java Servlets. Alan
can be reached at alan@n-ary.com (www.n-ary.com).

alan@n-ary.com

GET
YOUR
OWN!

GET
YOUR
OWN!

GET
YOUR
OWN!

$3999one
year

two
years

$6999

1800-513-7111
$69 one year Canada/Mexico

$99 one year all other countries

12 issues

24 issues

or subscribe online for faster service
subscribe@sys-con.com

Subscribe Today and receive
“JDJ Digital Edition” FREE!

save
$30!
save
$10!

23VOLUME: 4 ISSUE: 1 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

KL Group
www.klg.com

24 • VOLUME: 4 ISSUE: 1 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

This article describes our use of design
patterns to create an interpreter in Java, and
shows how it can be built in a “pure,” object-
oriented fashion. The patterns we use are
from Design Patterns: Elements of Reusable
Object-Oriented Software by Gamma, Helm,
Johnson and Vlissides, published by Addi-
son Wesley in 1995. (We’ll refer to this book
henceforth as DP.)

What Did We Build?
HotScheme is an online, multiplatform

interpreter of the Lisp dialect Scheme, with
GUI front-end and interactive Internet capa-
bilities. It’s currently implemented as a Java
applet, although the core of the interpreter
is independent of the front end. At present
it’s only a partial implementation of ANSI
Scheme, intended for use as an educational
tool for learning Scheme, GUI design and
interpreter implementation.

The project came into existence while we
were working with Dr. Jo Anne Parikh of the
Southern Connecticut State University Com-
puter Science Department. The interpreter
was originally written in C++ and later port-

ed to Java. We found that the port was not
difficult, and that for our purposes Java had
several key advantages over C++. It made
garbage collection a breeze, exception
handling more elegant and allowed us
to easily add features to the lan-
guage, such as fetching the con-
tents of a URL and creating
objects from the Java AWT. And
of course, its being able to run as
an applet from a Web browser han-
dled the problem of distribution.
We plan to take further advantage of
Java’s built-in networking capabilities
and make more AWT features available from
Scheme.

The Patterns
Interpreter: Modeling Scheme Grammar
Directly in Java Objects

In the Interpreter pattern a class repre-
sents each grammar rule in the language.
The interpreter’s parse tree, which is its
structural representation of the program
under execution, is built as a Composite (see
next section) of simpler grammatical ele-

ments. We extended the Interpreter pattern
to include interpreter input, borrowing an
idea from Bjarne Stroustrup’s The C++ Pro-
gramming Language (Addison Wesley 1993).
Instead of the core logic being in a large state
machine, as in a procedural interpreter, it is
dispersed through a hierarchy of classes.
Objects in HotScheme know how to con-
struct themselves from an input stream,
assemble themselves into a parse tree and
return the value they represent. There is a
trade-off here: a more traditional interpreter,

by Gene Callahan and Brian Clark

How they can aid in the design of complex software

JDJ FEATURE

Design
Patterns
in a Java

Interpreter

25VOLUME: 4 ISSUE: 1 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

like those gener-
ated by the
combination
of lex and
yacc, will run
faster, but
they may be
a little hard-
er to under-
stand. It was
for that rea-

son that we
chose simplici-

ty and clarity
over performance

– a pretty reasonable
trade-off given that we

viewed this as a tool for
learning and experimentation,

rather than for the purpose of creating
production systems.
We modeled Scheme data types directly

as Java classes. For a Lisp dialect, capturing
the data types as classes means capturing
the whole language, as Lisp programs are
Lisp data. This simplifies understanding the
interpreter; its structure reflects the defini-
tion of Scheme, and can be understood by

reading a Scheme manual.
Lisp interpreters oper-
ate in an endless read-

eval-print loop by
first getting input

from the user,
evaluating it

and then
return-

i n g
the

result of the evaluation. We discuss the read
phase of this loop in the Abstract Factory
section below. Evaluating the parse tree is
simply a matter of calling Eval() on the
SchemeObject returned by the read phase.
Leaf nodes in the tree (Scheme atoms, such
as numbers, strings and symbols) return
themselves as their value or, in the case of
symbols, return the object they label. Calling
Eval() on high-level nodes will trigger a
recursive evaluation of all nodes lower in the
tree, yielding a single return value – of a type

descended from SchemeObject – for that
portion of the tree. Similarly, this result is
printed by calling Print() on the object
returned by Eval(). If this object is a com-
posite, it will call Print() on its components.
This makes the top-level code so simple that
the body of this loop, the heart of the inter-
preter, is a single statement:

// term is the current terminal, global_env
the lexical environment:
term.println(((SchemeObject.make(term,
SchemeObject.START,

global_env)).Eval(global_env)).Print());

The meat of the evaluation phase is in the
List.Eval()method (see Listing 1). This is
because the most fundamental Scheme
activity is function application. When a list is
evaluated, its default behavior is to treat the
first item in the list (the car of the list) as a
function to be applied to the rest of the list
(the cdr) – the arguments to the function. As
Java lacks the varargs feature present in C
and C++, having a list data structure directly
available in Java greatly simplified writing
Java functions that handle the variable-
length argument lists required by Scheme.
Every Java method that implements a
Scheme function takes a list of SchemeOb-
ject elements as its single argument, and
pulls apart its “actual” arguments itself.

It’s important to note that List.Eval() calls
Evargs() (evaluate arguments) on the rest of
the list before passing these arguments to
the function. (We use an auxiliary function,
Evargs(), rather than Eval() itself, because a
second call to Eval() would treat the first
member of the rest of the list as a function –
not at all what we want!) For this reason cer-
tain Scheme forms, called syntax forms, can’t
be handled by an ordinary function applica-

tion. Consider the case of an if statement.
The ANSI Scheme specification for if

says that it evaluates its first argu-
ment and, if true, returns its sec-

ond argument; otherwise it
returns its third. But the specifi-

cation also states that whichever
branch is not returned must not be

evaluated. If we used an ordinary
function application to evaluate if, it

would be too late! We’d have evaluat-
ed the arguments before even calling if. Thus
these syntax forms are handled by special
cases in List.Eval(). The objects created to
represent these forms in the parse tree are
all descendants of the HotScheme class Syn-
tacticalForm, in keeping with our use of
classes to capture grammar.

Composite: Building the Parse Tree
The intent of the Composite pattern is to

allow clients to treat individual objects and
composites uniformly. The parse tree that

HotScheme builds to represent the com-
mand it is interpreting is an instance of this
pattern.

Lisp programs are built from Lisp’s main
compositional structure: the list. The fact
that a Lisp program processes lists and is
also made up of lists lends an elegant sim-
plicity to a well-built Lisp interpreter. Lists
are a basic data type, and can generally
appear in the same places as atoms such as
integers and strings. This allows us to use a
Composite to represent the parse tree. We
represent lists as SchemeObjects that hold
references to other SchemeObjects, which
can themselves be lists. A client calling an
object’s Eval() or Print() method need not
worry about whether it is dealing with an
atom such as an integer or a composite
such as a list – the call is made the same
way by the client, with the composite recur-
sively passing the call on to its components,
if necessary. For an example of how Com-
posite simplifies handling aggregate enti-
ties, see the implementation of List.Print()
in Listing 2.

Abstract Factory: A Common
Ancestor Creates All Scheme
Data Types

As mentioned above, objects know how
to read themselves from a tokenized input
stream and assemble themselves into a
parse tree. The class SchemeObject, in its
role as an Abstract Factory, is the place
where this knowledge resides.

The pattern DP refers to as Abstract Fac-
tory is also described in James Coplien's
Advanced C++ (Addison Wesley 1992), where
it is called the Exemplar idiom. An Abstract
Factory allows clients to create subclasses
of a class without specifying which subclass
to create. To achieve this, SchemeObject
itself determines which Scheme data type
we are reading. When its static make() pseu-
do-constructor passes a reference to a ter-
minal for input and to an environment for
interpretation, it will return a (properly sub-
classed) reference to whatever object type it
finds waiting for it on the input stream (see
Listing 3). SchemeObject asks the lexical
analyzer for the next token. It looks at the
type of token it receives to see which of its
subclasses to instantiate. This can be done
recursively so that when we find a compos-
ite object like a list on the stream, the object
returned will have constructed the elements
of the composite and will be holding refer-
ences to them.

Abstract Factory posits that clients will
deal only with the abstract interface provid-
ed by the factory class, and not call sub-
class-specific methods. The SchemeObject
is this abstract interface in HotScheme, and
is the base class for all concrete Scheme
data objects. This is important, because

many Scheme functions, such as predicates
like list? and number?, can operate on any
type of Scheme object. Also, Scheme lists
and vectors are heterogeneous collections,
and require a common base type to hold ref-
erences to. Because of this level of abstrac-
tion, clients don’t need to know about new
Scheme data types as we add them to the
system.

Having SchemeObject as an abstract
base class also helped when it came to
error handling. Because Scheme is not
strongly typed, any function might pass
any data type for any of its arguments.
However, this doesn’t mean that every
function can handle any data type! Many
combinations should produce a runtime
error. For example, the Scheme command
first makes sense only when its first argu-
ment is a list. It’s meaningless to ask for
the “first element” of an integer.
HotScheme handles this by throwing
exceptions in the base SchemeObject
class for most methods. A call to
SchemeObject.first(), by default, throws
an exception that states that the object
the method was called on is not a list. We
overrode that method only in the List
class. This eliminates the need to scatter
type-checking code throughout the system
– in this case a big gain in both simplicity
and performance.

Command: Scheme Built-in
Commands as “Functors”

Often, commands in an interpreter are
stored in a jump table that associates func-
tion names in the source code with function
addresses, or jump points. When a symbol
matches a name in the table, the interpreter
“jumps” to that address to execute the func-
tion there. However, when we went to imple-
ment the built-in functions, we found that
there was no straightforward way to create a
jump table in Java. This is because there are
no global functions, and no way to get a
pointer to a member function. We wound up
wrapping each function in what James
Coplien terms a functor – an example of the
Command pattern from DP. Each built-in
command has its own class. To execute the
command, we call the class’ Apply()
method, passing it its arguments – wrapped
in a Scheme list – and an environment in
which interpretation will take place. (Con-
veniently, this is also how we execute a
user-defined function.) We instantiate one
object for each built-in command when we
initialize the interpreter, and store this
instance in the symbol table as the value
associated with the symbolic name of the
command. Thus the object representing the
function is first stored in a hash table asso-
ciated with the key “first.” The code (first ‘(a
b c)) will cause the interpreter to look up

that object and call its Apply() method,
passing it the list (a b c). The Apply()
method returns a SchemeObject, in this
case a. At the point of execution the inter-
preter neither knows nor cares whether it is
executing a built-in or user-defined function
– that knowledge is stored in the function
object itself. The drawback of our solution
is that it has led to a large number of class-
es for built-in commands. See Listing 4 for
an example of one of these functors.

Façade: Our Terminal Interface
The Façade pattern hides a number of

complex interfaces behind a simpler, higher-
level interface. We employed it to hide I/O
details within the class LispTerminal. Our ter-
minal interface is minimal, with little coupling
between the UI and the interpreter. In addi-
tion to our GUI version we’ve implemented a
version for a Java character terminal, and it
would be trivial to make a version that, for
instance, interpreted code coming in on a
socket. Instead of having the interpreter
attempt to deal directly with character termi-
nal, AWT, Swing, socket, Accessibility and
other interfaces, the LispTerminal class pre-
sents a few abstract operations – like reading
and printing – that the interpreter needs. The
interpreter is passed an object that is a
descendant of LispTerminal, to which it will
direct I/O requests. Thus it is the creator of

26 • VOLUME: 4 ISSUE: 1 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

ADVERTISER INDEXADVERTISER INDEX
4th Pass 18
www.4thpass.com 206 329-7460

ColdFusion Developer’s Journal 26
www.sys-con.com 800 513-7111

Computer Associates 6
www.cai.com/ads/jasmine/dev 888 7-JASMINE

DevelopMentor 21
www.develop.com 800 699-1932

Distinct Software 33
www.distinct.com 408 366-8933

Enterprise Solutions Conference 41
www.jumpstart99.com 888 823-DATA

EnterpriseSoft 11
www.enterprisesoft.com 415 677-7979

InetSoft Technology Corp. 17
www.inetsoftcorp.com 732 235-0137

Inprise Corporation 49
www.inprise.com 408 431-1000

Advertiser Page
Intuitive Systems, Inc. 15
www.optimizeit.com 408 245-8540

Jinfonet 51
www.jinfonet.com 301 983-5865

KL Group Inc. 23, 68
www.klg.com 800 663-4723

Kuck & Associates 45
www.kai.com 888 524-0101

Microsoft Corporation 37
www.msdn.microsoft.com/visualj 800 509-8344

NetBeans 13
www.netbeans.com 420 2/ 8300 7300

Object Space 67
www.objectspace.com 972 726-4100

OMG 63
www.omg.com 508 820-4300

Oracle Corporation 2
www.oracle.com/info/27 800 633-0539

Pervasive Software 43
www.info@pervasive.com/sdk-jd 800 884-6235

ProtoView 3
www.protoview.com 800 231-8588

Sales Vision 47
www.salesvision.com 704 567-9111

Schlumberger 4
www.cyberflex.slb.com 800 825-1155

Slangsoft 35
www.slangsoft.com 972-3-7518127

Snowbound Software 27
www.snowbnd.com 617 630-9495

Spring Internet World 99 55
www.internet.com 800 500-1959

SYS-CON Radio 54
www.sys-con.com 800 513-7111

Wall Street Wise Software 59
www.wallstreetwise.com/spell.htm 212 342-7185

Advertiser Page Advertiser Page

the interpreter instance, not the interpreter
itself, that decides how I/O will be per-
formed. For our character terminal version,
input is read straight from the terminal. GUIL-
ispTerminal buffers keyboard input from
HotScheme’s input field and sends it all to
the interpreter once the “Evaluate” button is
clicked. To perform output, the interpreter
calls the Print() method of the terminal
passed to it, and the different terminal types
output the text correctly. LispTerminal also
provides a pushback buffer when the tok-
enizer has to read “too far” to tell when it has
completely captured a token. (For example, a
tokenizer can’t tell that it’s done reading a
number until it reads the first character that
is not a digit – one too many! The tokenizer
needs to “push back” this extra character
onto the input stream so that the next call for
a token will read it.) Since lower-level I/O
objects may not provide this capability, the
Façade abstraction again simplifies our inter-
faces. See Listing 5 for the definition of
LispTerminal.

How Did Patterns Help?
Employing patterns lent shape and

coherence to our high-level design. Without
being able to think about the interpreter
using these patterns, the complexity of its
design would have expanded beyond our
grasp. The patterns gave us a way to think of

the interpreter as a number of very high-
level constructs, the details of which we
could ignore when considering the inter-
preter as a whole.

The use of patterns is also crucial in com-
municating the design. In our discussions it
was immensely helpful to be able to give
names to the ideas shaping our work. To say
“We’ll employ an Abstract Factory to create
Scheme types” captured a large piece of
design in a simple, succinct statement.

Finally, by densely combining patterns in
a small design space, we began to glimpse
the poetic quality that Christopher Alexan-
der, in A Pattern Language (Oxford Universi-
ty Press 1977), asserts this “compression”
of patterns can produce. As we wove these
patterns into our design, the program began
to surprise even its authors in the way new
features effortlessly emerged from the
structures we had already created. And this
sense of adventure and elegance is what can
make our profession a fulfilling one to pur-
sue.

We welcome communication from anyone
interested in contributing to this project, and
from any computer science departments or
other educators who would like to deploy
HotScheme at their institution.

Resources – URLs
Patterns Home Page: HYPERLINK

http://hillside.net/patterns/
http://hillside.net/patterns/
Pattern FAQ Page: HYPERLINK
http://gee.cs.oswego.edu/dl/pd-FAQ/pd-
FAQ.html
http://gee.cs.oswego.edu/dl/pd-FAQ/pd-
FAQ.html
Christopher Alexander: An Introduction for
Object-Oriented Designers: HYPERLINK
http://gee.cs.oswego.edu/dl/ca/ca/ca.html
http://gee.cs.oswego.edu/dl/ca/ca/ca.html
HotScheme:
www.stgtech.com/HotScheme

About the Authors
Gene Callahan is president of St. George
Technologies, where he designs Internet projects. He
has written for Computer Language, Software Develop-
ment and Web Techniques, among others. He can be
reached at gcallah@erols.com.

Brian Clark is a software engineer residing in Virginia.
His current focus is on the application of design patterns
on UI and middle-tier design using Java. Brian can be
reached at bclark@crosslink.net.

27VOLUME: 4 ISSUE: 1 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

gcallah@erols.com bclark@crosslink.net

Snowbound
www.snowbnd.com

✰BEA WebXpress
✰Category: Application Server
✰Winner: BEA WebLogic

BEA WebLogic is a Java application server for develop-
ing, integrating, deploying and managing large-scale dis-
tributed Web, network and database applications. With its
comprehensive support for Enterprise Java Standards,
WebLogic protects user investment and makes it possible to
build portable, scalable applications that interoperate seam-
lessly with other applications and systems.

The BEA WebLogic application server offers the critical
front-end Web component of BEA Systems’ end-to-end
enterprise middleware solution. BEA WebLogic:
• Fully implements 10 of the 12 Enterprise Java APIs,

including JDBC, EJB, RMI, event management and JNDI
• Provides a comprehensive implementation of the Enter-

prise JavaBeans 1.0 specification
• Provides tools to aid in the creation and management of

Enterprise JavaBeans, permitting the hosting of both cus-

tom and off-the-shelf business components
• Provides support for persistency to multiple databases
• Works easily with industry-leading databases, as well as

Microsoft Visual Basic, Visual C++, Active Server Pages
and COM

• Works easily with industry-leading development tools,
including Visual Café, JBuilder, Supercede, J++ and Visu-
al Age

• Deploys and manages applications to ensure scalability,
availability and security

BEA WebLogic extends leading Java IDEs to support
the development and debugging of multitier Java applica-
tions. WebLogic’s implementation of Enterprise JavaBeans
technology makes it easy to encapsulate business logic as
secure, transactional components.

The BEA WebLogic application server is an extensible
framework that allows any standard Java application to be
“snapped in,” including the Java client bindings provided
for most legacy systems. BEA WebLogic’s multitier JDBC
implementation allows a Java application to access and
update databases from anywhere on the network. BEA
WebLogic also allows any Microsoft COM object to be eas-
ily plugged into the WebLogic framework. BEA WebLogic
provides support for CORBA IIOP, IDL-compatible services
and bidirectional interoperation.

Java applications hosted by BEA WebLogic can be repli-
cated in a cluster with no additional programming. For scal-
ability, WebLogic balances the load across available
instances of the replicated service. For fault tolerance,
WebLogic also replicates state information so that an out-
age can be completely masked from both users and appli-
cations. Network security is ensured through optional

encryption, authentication and authorization based on the
RSA Secured Sockets Layer, X.509 certificates and access
control lists.

BEA WebLogic provides centralized management for
large distributed configurations of clients and servers
through a single comprehensive view of the overall system.
Its pure-Java graphical management console allows remote
monitoring, integrated logging and dynamic application
partitioning. Its Zero Administration Client supports auto-
matic distribution of software applications and Java applets.

✰Cloudscape
✰Category: Database
✰Winner: Cloudscape Database

Cloudscape offers the first zero administration database
that’s optimized for embedding in applications to be
deployed outside the corporate “four walls.” Cloudscape
Database is a full object-relational DBMS, providing SQL-
92, plus the ability to extend the system easily with Java
class libraries to support complex data and logic. To support

28 Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 1 1999 http://www.JavaDevelopersJournal.com

AWARD✰WINNING✰JAVA✰PRODUCTS
Every year, Java Developer’s Journal presents two types of

awards – the JDJ Editor’s Choice Awards and the JDJ Readers’ Choice
Awards. These awards are designed to honor and recognize the lead-
ers in the Java world – specifically, those companies and products
that the editor and readers feel are the best of breed.

The Readers’ Choice Awards are based on nominations submit-
ted to our Web site and by e-mail. There are a large number of cate-
gories for which a product can be nominated, including Best Bean,
Best Application Server, Best Development Environment and a host
of others (see below). The Readers’ Choice Awards are presented to
the products that receive the most votes in a particular category,
with ties being decided by the editor, who reserves the right to
select multiple winners if the situation warrants it.

The Editor’s Choice Awards are selected by the editor-in-chief of
JDJ – which is me, Sean Rhody. For each category in question, I did

research to identify and compare the products that were relevant.
For example, for Application Servers I looked at the servers that
were shipping at the time of selection and that support Java as a pri-
mary component development language. I compared features such
as model support (COM, EJB and CORBA), Load Balancing and Clus-
tering.

For the category Best Development Environment, I looked at things
like support for two-way coding, ease of use of the interface and sup-
port for team development. In each case I tried to identify the product
that was the best overall in my comparisons. In some cases I didn’t
have a clear winner, or I didn’t know enough about the competition in
the category to make a selection. In those instances I left the selection
of a winner to the readers.

Congratulations to all of this year’s winners!

✰✰✰

✰✰✰

✰✰✰

✰✰✰

✰✰✰

✰✰✰

✰✰✰

✰✰✰

✰✰✰

✰✰✰

✰✰✰

✰✰✰

✰✰✰

the needs of next-generation Java applications, Cloudscape
Database is designed to be pervasive, deployable, manage-
able and extensible.

Written in 100% Pure Java, Cloudscape Database can
be embedded in applications at any level in the architec-
ture, allowing data management to pervade the entire sys-
tem, wherever needed, from server-class machines to lap-
tops. Cloudscape is also positioned to support the emerg-
ing lightweight device market by providing database sup-
port for platforms such as Windows CE. Optimized for the
new mobile and distributed applications, Cloudscape
makes no assumption that database management skills are
available at end-user sites, whether the end user is an
employee, partner or customer.

With an extremely small footprint, Cloudscape is agile
enough for deployment over the network. It is designed to
meet the needs of companies that see the intranet and
extranet as the most cost-effective mechanisms for deliver-
ing core business applications and products. Remote and
embedded applications are managed from a central point.
Supporting the database is Cloudscope, a tool for the data-
base developer.

Cloudscape recently released the beta version of
Cloudscape Application Synchronization, advanced technol-
ogy for replication offerings that guarantees application-
level consistency from existing corporate applications to the
occasionally connected individual user or workgroup. A key
to its success is its low cost of deployment and maintenance
of distributed applications using the Cloudscape architec-
ture.

✰DTAI
✰Category: Framework
✰Winner: LEIF

DTAI’s lightweight extensible information framework –
LEIF – leverages the best and most advanced features of
Java to deliver a complete platform for information integra-
tion and data visualization. LEIF combines advanced Jav-
aBean technology (InfoBus, BeanContext and JavaBeans

Activation Framework) with
intelligent data awareness
through Java’s reflection
mechanisms. The LEIF

architecture provides the means to gather information
simultaneously from a variety of remote sources, using any
protocol (CORBA, RMI, JDBC, etc.), to translate that infor-
mation into a common object representation and then
process and display that data intelligently using indepen-
dently developed graphs, maps, spreadsheets and other
visualization tools.

As a client, LEIF connects to servers via independently
developed extensions called LEIF Producers. The LEIF Pro-
ducer APIs allow LEIF to dynamically discover the objects,
attributes and functionality of new data sources. LEIF Pro-
ducers are responsible for all external communication and
storage responsibilities. Even local file access is handled
through a File Producer. As a result, LEIF does not mandate
any particular data storage model (e.g., file-based, object or
relational databases) or distributed computing architecture
(e.g., RMI, CORBA or COM). If a producer is developed to
support a particular storage or communications implemen-
tation, then LEIF supports it as well.

The LEIF framework provides a central display model
that serves as a runtime reference to all available data. The
display model pulls data from the LEIF InfoBus and builds
a hierarchy – or tree structure – of all data supplied by a
LEIF Producer. The display model also provides a flexible
display filter capability. As data enters the display model, it’s
tagged with display attributes (e.g., color, symbol, line style)
based on the filter criteria specified by the operator.

The LEIF framework also supports the integration of

new LEIF Views, or user interface applications that can view
data either generically or based on expected inputs from
known LEIF Producers. A LEIF View uses the InfoBus to
consume the display-filtered data from the display model.
By default, LEIF Views are based on the Java JFC/Swing
user interface toolkit and typically manage one or more
JavaBean components to display data in various visualiza-
tions (geographic maps, data plots, time plots, tables, etc.).
Data can be dynamically interrogated and displayed in a
variety of views. LEIF Views can also be tailored to provide
nonwindow services on the display-filtered data from the
display model. For example, services could include data
forwarding, which would forward the display model
objects to external CORBA-based display applications that
can also use the display information.

✰Bruce Eckel
✰Category: Beginner’s Book
✰Winner: Thinking in Java

Bruce Eckel developed his book, Thinking in Java, dur-
ing the creation and delivery of a number of incarnations of
his public Java seminar. During this process he observed
that the problems most people had involved language
issues. His goal for the book was to teach the core language
and to give people a solid foundation in what the lines of
code mean before they jump into the use of Java libraries,
such as for applets
and windowing. He
has found that once
the fundamentals
are understood, it’s
easy to acquire a
new library. Without
the fundamentals,
there are constant
roadblocks to devel-
oping that under-
standing. Conse-
quently, it’s not until
Chapter 13 that
applets and GUI pro-
grams are discussed. But by then, Eckel feels, people should
understand the other issues and can focus on the libraries
themselves. Readers will find that the programs are all
designed to be compiled on the command line with the
free JDK from Sun. And though they’ll work with any con-
forming Java tool, the author has made an effort to avoid
any vendor dependencies.

Eckel has created a system that automatically extracts
code listings from the book for compilation, which reason-
ably ensures their accuracy. He put the book on his Web
site (www.BruceEckel.com) and received a number of cor-
rections from people, which he feels made a huge differ-
ence in its accuracy. This process also helps sell the associ-
ated CD-ROM, which contains all the slides and spoken lec-
tures from his Java seminar.

✰EnterpriseSoft
✰Category: Reporting Tool
✰Winner: ERW Pro

EnterpriseSoft’s Report Writer – Professional Edition
(ERW Pro) for Java is a full-featured report writer. The core
functionality of the software is to assist the user in creating
a report definition file (called report templates), extracting
data from a data source, and analyzing and outputing the
data in a professional-quality report that’s both informative
and impressive.

ERW Pro is data-source–independent. It can extract
data either from databases or from objects in an applica-
tion. Most commercial databases such as Oracle, SQL Serv-
er, Sybase and MS Access are supported via JDBC or ODBC.

http://www.JavaDevelopersJournal.com 29Java DEVELOPER’S JournalVOLUME: 4 ISSUE: 1 1999 •

Application data is queried using an object-relational map-
ping architecture. Application data reporting is fast and effi-
cient and can scale to tens of thousands of objects. It’s ideal
for distributed applications and is the preferred model of
data access for enterprise-class applications.

ERW Pro provides multiple nested/sibling sections with
dependent queries, nested groupings, a table of contents
for viewing, charts/graphs, report executables and expres-
sion evaluations featuring user-defined function capabili-
ties. The application data source uses an SQL-compliant
querying functionality and can be extended to add one’s
own operators using user-defined query operators.

Reports in ERW Pro can be exported to HTML, PDF or

ASCII-CSV file formats. They can also be sent to the printer
for WYSIWYG hard copy or simply viewed on-screen. Effi-
cient report distribution is possible using EnterpriseSoft’s
proprietary DAT file format.

ERW Pro is easy to use. The GUI is simple and intuitive
and works similarly to the GUI found in legacy Windows-
based report writers. Queries are autogenerated based on
the report template.

ERW Pro is designed with the Java developer in mind
and is compact enough (about 500 KB; 350 KB for run-
time) to be embedded into an HTML page or inside an
application. Developers can use its API to insert this soft-
ware into their applications. Licensing is developer-based
with limited, royalty-free redistribution.

ERW is certified 100% Pure Java and can run on most
platforms for which Java 1.1.5 or higher JVMs are available.
Tested platforms include Solaris 2.5.1/2.6/2.7, Windows
95/98/NT 4.0 and Mac OS 8.0 or higher.

✰Inprise
✰Category: Java Development
✰Environment
✰Winner: JBuilder 2

JBuilder 2 is a comprehensive visual development tool
for creating pure-Java distributed enterprise applications. It
includes a combination of features for creating platform-
independent business and database applications, distrib-
uted applications and JavaBean components.

JBuilder 2 can increase productivity with a visual devel-
opment environment that includes a component palette,
fully integrated application browser, project manager, visu-
al designers, Pure Java Two-Way Tools, code editor, HTML
viewer, graphical debugger and a fast compiler. With the
Pure Java Two-Way Tools, the code editor and visual design-
ers are always synchronized, with no proprietary markers,
macros or tags.

JBuilder supports the latest Java standards, including
JDK 1.2, JDK1.1, JFC/Swing, Enterprise JavaBeans, JDBC,
Servlets, Serialization, RMI, CORBA, Security, JNI and JARs.
In addition, JDK Switching allows developers to compile

against any JDK using JDK
Switching.

Reusable and Enterprise
JavaBeans can be created
instantly with BeansExpress.
JBuilder includes visual
bean designers for Proper-
ties, BeanInfo and Events,
making it easy – point and
click – to create industry-
standard JavaBeans. BeanIn-
sight provides an analysis tool
for diagnosing JavaBeans, including information on valid
properties, property editors and Customizers. In addition,
JBuilder has the largest library of JavaBeans, with 200+
components, including source code.

Corporate data can be managed with JBuilder’s Pure
Java DataExpress, which provides components for visual
development of database applications using industry-stan-
dard JDBC connectivity. Master-detail relationships, Picklists,
Lookups, MultiTable Joins and transaction processing can
also be created easily.

The Inprise Deployment Server allows Java developers
and information system managers to centrally deploy, man-
age and update their Java applications across corporate
information networks. IS managers can reduce application
deployment and maintenance costs while remote clients
gain immediate, reliable access to the most current version
of any application.

Scalable enterprise applications can be built with Visi-
Broker for Java. JBuilder 2 includes VisiBroker for Java 3.2,
seamlessly integrated into the environment and project
management systems so that complex CORBA applications
can be delivered quickly. The Visigenic IDL compiler is
invoked as part of the normal build process for a project,
and automatically translates all IDL files in the project into
the OMG-compliant Java binding.

✰InterNetivity
✰Category: Reporting Tool
✰Winner: dbProbe

For organizations that wish to deploy business intelli-
gence capabilities to their users, InterNetivity dbProbe 4.0
delivers Web-based decision support that’s easy to deploy
and use. The product’s interactive OLAP and standard
reporting client allows Web-based users to access and ana-
lyze data from a variety of sources, including ODBC and
Microsoft OLE DB for OLAP-compliant servers.

Administrators can deploy dbProbe in client-only or
client/server mode. Deployment is straightforward in client-
only mode; using a data source, administrators create a
data cube and standard reports that are automatically pub-
lished inside a single HTML page ready for deployment via
the Web. There’s no client software to install and no incre-

mental effort required to scale up to thousands of users
across an enterprise. Administrators can set up OLAP chan-
nels for distribution of updated cubes to their users. Larger
data cubes remain on the server for remote access via the
Web. For users it’s completely transparent: they open a sin-
gle HTML file from the Internet or intranet server that auto-
matically downloads the dbProbe Java applet and then lets
users navigate the data.

Written in 100% Pure Java, the dbProbe client lets users
drill down, slice and dice, graph, create and share reports.
Users can create new categories; hide, group and sort cate-
gories; and export data directly to their favorite spreadsheet
or print it on any printer. The dbProbe client occupies less
than 400 KB, supports mobile users and offers fast perfor-
mance.

An economical, efficient way for organizations to dis-
tribute business intelligence tools to their Web-based users,
its architecture makes dbProbe a good choice for software
vendors looking to incorporate Web-OLAP capabilities into
their tools.

✰Mercury Interactive
✰Category: Testing Tool
✰Winner: WinRunner

WinRunner is an enterprise-functional testing tool that
verifies that Java applications are working as expected. By
capturing and replaying user interactions automatically,
WinRunner identifies defects and ensures that Java applica-
tions work flawlessly the first time and remain reliable.

The adoption of Java in mission-critical applications is
causing a shift in the complexity of application architectures
and in the client software distribution process. The need for
testing in different environments occurs not only across dif-
ferent platforms but also between various browsers, virtual
machines, windowing toolkits and releases of the JDK.

WinRunner simplifies test automation by approaching
the task from a business-process perspective. While a user
accesses the Java application, WinRunner automatically
translates user actions into clear, readable test scripts that

can later be replayed to verify the functionality of the later
builds of the application. It supports script enhancements as
the application is developed or updated, executes scripts,
reports results and enables script reusability throughout an
application's life cycle.

WinRunner works with any Java-based applets or appli-
cations. With its sister product, XRunner, it offers full sup-
port for different hardware platforms (Solaris, HP/UX, Win-
dows NT, 98 or 95), different browsers (Microsoft Internet
Explorer, Netscape Navigator or Sun’s Appletviewer) and
different windowing toolkits (Oracle’s EWT, Sun’s AWT,
Sun’s JFC/Swing, Oracle’s Developer/2000, Symantec’s
Visual Café and others). WinRunner test scripts can be
leveraged across any combination of these environments,
shared between Java, ERP application fronts and custom
client/server clients, and even used for load testing. For
example, users can develop a WinRunner test with Internet
Explorer on Windows 95 and run it without any changes

http://www.JavaDevelopersJournal.com30 Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 1 1999

with Netscape Navigator on Solaris.
Mercury Interactive’s integrated testing solution for

Java-based applications comprises the products TestDirec-
tor, WinRunner, XRunner and LoadRunner. These tools pro-
vide functional and load testing across the wide range of
platforms, browsers and architectures found in Java imple-
mentations while leveraging test script usage between envi-
ronments. WinRunner (for Windows-based applications)
and XRunner (for Unix-based applications) automate func-
tional and regression testing of Java clients. LoadRunner
performs scalable load testing of Java-based systems while
TestDirector organizes the entire testing process and man-
ages high testing volume of Java-based applications.

✰ObjectSpace
✰Category: Class Library
✰Winner: JGL

ObjectSpace JGL – the Generic Collection Library for
Java – is a Java adaptation of the ANSI/ISO standard tem-
plate library that extends the JDK with a series of 11
advanced collections and more than 50 generic algorithms.

JGL is designed to complement,
not replace, the basic features
found in the JDK and is of particu-
lar use to enterprise Java develop-
ers. JGL includes full source code,
hundreds of examples and a com-

prehensive online HTML tutorial and class reference. JGL
enhances distributed collection support, allowing the
remote construction, access and persistence of all JGL con-
tainers using ObjectSpace Voyager, the standards-neutral
platform for object computing.

The JDK, which contains limited support for data col-
lections and algorithms, was designed to provide a minimal
subset of features used by the majority of Java developers.
Although the JDK is sufficient for simple applet design and
other such uses, JGL offers serious developers not only
essential enterprise collections, but also the advanced data
processing algorithms needed for use with those collec-
tions. These algorithms have been designed for use on JGL
collections, Java-native arrays of primitives and objects, and
all JDK collections. The generic JGL algorithms can be
adapted using function objects and predicates to solve most
collection processing problems.

Since June 1996, when JGL 1.0 was offered free to the
Java community, this 100% Java, high-performance exten-
sion of the basic JDK features has been licensed by 10 major
IDE vendors and downloaded by thousands of users.

✰Protoview Development
✰Category: Best Bean
✰Winner: JFCDataExplorer

One of the first products to fully take advantage of Java
Foundation Classes, the JFCDataExplorer is built on the
familiar foundations of three JFC components – JTree,
JSplitter and JTable – and Protoview has integrated them
into a single component with added functionality and
extended features.

Developers working with the JFCDataExplorer can take
advantage of the synchronicity ProtoView has programmed
between “panes” of the component. The left-hand pane
contains a treeview that functions as a hierarchical structure
for application data. Clicking on the nodes of the treeview
allows the right-hand pane to populate with data from any
source. While developers can default to the JTable data
model, ProtoView has created a custom data model specif-
ically for the JFCDataExplorer that incorporates a treeview
into its logic and structure.

With each node click, the JFCDataExplorer retrieves
data and populates the JTable with its corresponding col-
umn configurations. It also allows developers to add a col-

umn with images (the first column in the grid) at runtime.
This column is bound to each row of data and moves when
developers sort or move rows.

In addition to the standard JTable as the right-hand

pane, ProtoView has opened the JFCDataExplorer to accept
any Java component or panel in that pane. Using the tree-
view to drill down on nodes, the JFCDataExplorer creates the
perfect UI for organizing and streamlining application data.
With limited screen real estate, developers can create data
hierarchies with corresponding grids, charts, calendars and
panels on a node-by-node basis. Like all ProtoView JFC
products, the JFCDataExplorer takes advantage of the “plug-
gable look and feel architecture” of JFC, which allows it to
easily switch from Motif, Java or Windows displays on the fly.

✰Rational Software
✰Category: Modeling Tool
✰Winner: Rational Rose

Rational Rose 98 provides Unified Modeling Language-
based modeling for designing component-based applica-
tions. UML, pioneered by Rational and officially adopted as
a standard by the Object Management Group, is the indus-
try-standard language for specifying, visualizing, construct-
ing and documenting the artifacts of software systems.

Rational Rose 98 features multilanguage capabilities
and enterprise team development features, including inte-
gration with Rational’s ClearCase software configuration
management
product. It
provides a
component-
m o d e l i n g
approach to application development with support for
COM, ActiveX and JavaBean components. The Enterprise
Edition has multilanguage support that allows multiple lan-
guages to be mixed and matched within the same model.

Rose 98 supports C++, Java, Smalltalk and Ada, as well
as 4GLs such as Visual Basic, PowerBuilder and Forte. For
Java development, it supports the design, modeling and
visualization of all Java constructs, including packages, class-
es, interfaces, imports, inheritance, fields, methods and
modifiers. In addition, Rational Rose 98 can automatically
generate Java source code and reverse-engineer Java
source and byte codes. It also offers extensive support for
object-relational databases such as Oracle8.

To enable development teams to share project infor-
mation, Rational Rose 98 provides integration with
ClearCase software and Microsoft’s Visual SourceSafe ver-
sion control software. Rose 98 models may also be pub-
lished to and imported from the Microsoft Repository.

Rose 98 provides a framework library that contains
templates with predefined components for modeling cer-
tain systems and includes frameworks for databases, the
Internet and the Microsoft Transaction Server. Users can
store their own models in the framework library and then
make them available to other development team members.

Rational Rose 98 is available in three editions for Win-
dows 95 and NT. The Enterprise edition provides multilan-
guage support for C++, Java, Visual Basic, Oracle8 and
other languages. The Professional edition provides single
language capability and is available for C++, Java and Visu-
al Basic. The Modeler edition supports UML-compliant
modeling. Rational Rose is also available for the following
UNIX platforms: Sun Solaris, HP-UX, SGI IRIX, IBM AIX and
Digital UNIX.

✰Riverton
✰Category: Modeling Tool
✰Winner: HOW 2.0 for Java

HOW is a component-based modeling tool and
deployment framework designed for developers of distrib-
uted business systems. With the needs of business devel-
opers in mind, HOW extends the traditional idea of model-
ing to include development and deployment. HOW makes
it straightforward for mainstream developers to build dis-
tributed and Internet systems in Java that comply with Sun
Microsystems’ Enterprise JavaBeans specification and
allows these developers to leverage the growing number of
EJB-based application servers.

HOW gives Java developers a set of business analysis
and component modeling tools that understand business
systems:
• Requirements gathering is accomplished using HOW’s

Business Rule Builder.
• Developers define the business problem and its business

process context in HOW’s Use Case and Workflow
Builders.

• They use HOW’s UML-compliant Domain, Interaction
and Activity Builders to design the system’s business
components, describe their interactions and graphically
depict their behaviors, respectively.

• HOW extends UML to include the Task Builder, a graph-
ical tool for architecting the system’s visual components,
and the Query Builder, another graphical tool for defin-
ing middle-tier business component data access.

From these models HOW users generate Java classes –
including Enterprise JavaBeans – that form the basis for
Java business applications. HOW generates:
• Design objects (class objects and domains) into Java

classes, including Enterprise JavaBeans (session and enti-
ty beans)

• Queries into classes that implement JDBC-embedded
SQL statements

• Class methods that allow convenient traversal of associa-
tions as collections of business objects

These HOW-generated classes can be loaded into a
Java development environment and elaborated as required
by the application. HOW is designed to integrate tightly with
all of the major Java development environments, which
ensures that the transition from HOW to IDE and back is
seamless. HOW’s ability to synchronize development and
design environments assures round-trip engineering and

31Java DEVELOPER’S JournalVOLUME: 4 ISSUE: 1 1999 •http://www.JavaDevelopersJournal.com

loss-free code generation.
Developers can also use HOW to preserve and reuse

existing work. In addition, it can capture classes from data
models or Java source files. Once in HOW, these classes
can be modified or enhanced and then regenerated – even
as Enterprise JavaBeans.

HOW is built on a multiuser object repository that pro-
motes team development and creates a climate for compo-
nent reuse. Developers share and reuse individual compo-
nents. And HOW’s integration with popular configuration
management products means that versioning and archiving
take place at the component and object level.

HOW-built Java components can execute on COM+ or
EJB application servers, using either DCOM or CORBA as
their distribution protocol.

✰Secant Technologies
✰Category: Middleware
✰Winner: Extreme POS

Secant Extreme Persistent Object Service for Java pro-
vides a Java-to-RDBMS and ORDBMS integration solution.
Extreme POS is a powerful development and runtime envi-
ronment that simplifies the assembly of the data-intensive
business applications that integrate Java objects with enter-
prise-relational data. For three-tier development, Extreme
POS provides an efficient in-memory caching and database
connection-pooling architecture, making it a good choice
for companies that are developing CORBA-based systems
and want to use a scalable, persistent object service to sup-
port the data-intensive needs of hundreds of concurrent
users. Extreme POS can also be used in a classic client/serv-
er configuration, allowing each client to have its own data-
base connection.

Extreme POS provides a complete, ready-made infra-
structure solution that supports both forward and reverse
engineering. It will generate database schema and mapping
code from an object model and will also generate an object
model and mapping information from an existing database
model.

Extreme POS is unlike competing JDBC products that
implement call-level interfaces. Such products force Java
developers to work at the SQL level with rows and columns.
As a result, developers must hand-code a specific Java-to-
relational-mapping solution for each application. Because
the SQL data mapping code is intermixed with the business

logic programming code, the resulting applications are dif-
ficult and costly to maintain. The JDBC approach is time-
consuming, expensive and error-prone. Extreme POS elim-
inates the deficiencies imposed by other solution approach-
es and provides the following benefits:
• Productivity: Application development time is reduced to

20% - 40%. Developers write no database mapping code,
as code is generated automatically from a standard object
definition language or from a Rational Rose 98 UML
description of the business object model (when used in
conjunction with Secant’s Rose Secant Extreme Link
product). With 100% portable applications across all sup-
ported databases, no extra porting work is required.

• Performance: A ten- to a hundredfold improvement in
application runtime performance is typical, as objects are
read into memory only once, using an advanced two-
level, in-memory caching architecture. Coupled with an
enterprise scalable architecture, high-transaction volume
applications are easily supported.

• Extreme POS’s integration support is seamless and easy to
use, and it makes a relational database look and perform

like an object database. Developers perform all querying,
navigating and updating in terms of the object model, not
the database. No SQL is ever needed.

✰Sybase
✰Category: Application Server
✰Winnner: Enterprise Application Server

The Sybase Enterprise Application Server (EAServer) is
a scalable deployment environment that supports simple,
dynamic, data-driven Web sites as well as fully integrated,
component-based information systems. EAServer includes
a component transaction server (Jaguar CTS) and a dynam-
ic page engine (PowerDynamo) to deliver rich, dynamic
data publishing and OLTP for the Web. This provides cus-
tomers with a complete platform and enables them to build
the next generation of applications that call for stronger

relationships with back-office systems, such as customer
self-service, dynamic information, trading networks and
enterprise application integration.

EAServer provides both Web and nonWeb access to
back-office systems, allowing customers to leverage their
current IT investments by reusing existing skills and appli-
cations. It delivers a flexible foundation that can scale from
simple dynamic Web sites to complex, data-intensive, trans-
action-aware applications in one integrated environment.

With this product, Sybase delivers an enterprise class
platform for distributed and Web applications. EAServer
provides high-performance capabilities, including page
caching and scheduling, connection, and instance and ses-
sion pooling. With EAServer, applications are secure
because they have the support of industry-standard Secure
Socket Layers, which secure access to operational systems.

EAServer offers a standards-based environment, giving
customers and partners freedom of choice in building
applications. It provides support for most major compo-
nents, including Java and JavaBeans technology, CORBA,
COM and C/C++. Upcoming releases will add native sup-
port for PowerBuilder components and Enterprise Jav-
aBeans. EAServer also supports over 25 databases.

EAServer is an integral part of Sybase’s development
tools, offering the choice of PowerBuilder or Java compo-
nent development. This provides a complete Web develop-
ment environment with team and site management, HTML
and script editing, component assembly, script debugging
and automated deployment.

✰Tidestone Technologies
✰Category: Grid Control
✰Winner: Formula One for Java

Spreadsheets are one of the most commonly used
technologies for collecting, computing and displaying data.
The Internet is a vast and powerful resource for enabling
communication between organizations, their employees
and their customers. Formula One for Java 5.5.1 from Tide-
stone Technologies, Inc., enables users to merge these two
technologies and make it easy for spreadsheet data and

functionality to extend wherever it’s needed.
Primarily, Formula One for Java is a 100% Pure Java

spreadsheet application. However, Java developers can use
it as a JavaBean while Webmasters can use it as an applet.
Powerful as well as versatile, it can be used on a server or
a client and in Web-based applications. It includes several
robust, cross-platform features and, in addition to spread-
sheet applications, developers and Webmasters can use it
as a grid to present data in tabular format, to perform sim-
ple or complex calculations, to access data in a variety of
databases, and to write and format spreadsheet data in a
variety of ways.

As a JavaBean, Formula One for Java can be used in
many of the Java development environments on the mar-
ket today, such as Symantec’s Visual Café, Sun’s Java Work-
shop and Inprise’s JBuilder. Formula One for Java includes
a robust API of more than 400 properties and methods. It
also connects to most databases through its JDBC support
and is capable of writing spreadsheets to HTML. Its light-
weight file size makes it possible to build server-based
applications that are easy for users to download while sup-
plying developers with the spreadsheet functionality they
require.

Webmasters can deliver live spreadsheets in their Web
pages by using Formula One for Java as an applet and as
little as one line of HTML code. They can also load spread-
sheets customized with
their own formulas and
formats. A good way to
move Excel spread-
sheets across the Web
or a network, Formula
One for Java’s small download and fast calculations ease
the implementation of live spreadsheets in Java-enabled
browsers.

The product includes a Workbook Designer that can be
used on any platform as a stand-alone, Excel-compatible
spreadsheet application. Users can implement numerous
data formatting options and utilize Excel-worksheet function
syntax. Formula One for Java also delivers fast calculations,
making it a good cross-platform solution for reading and
editing Excel files.

✰Timecruiser Computing
✰Corporation
✰Category: Best Java Application
✰Winner: Timecruiser

Timecruiser 1.5 is a Web-based collaborative time man-
agement and event publishing application. Using Time-
cruiser, enterprise or community users can manage and
communicate their event information such as corporate
events, departmental activities or project schedules via
intranet, Web site or extranet. It enables individual users to
maintain personal schedules in accordance with group and
public events.

Installed entirely on a Web server, the Timecruiser
application is launched easily from any browser. Time-

http://www.JavaDevelopersJournal.comJava DEVELOPER’S Journal32 • VOLUME: 4 ISSUE: 1 1999

VOLUME: 4 ISSUE: 1 1999 • 33Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Distinct Software
www.distinct.com

cruiser’s architecture allows users to post, coordinate, pro-
mote, invite and RSVP group or individual events placed
on calendars, enhancing the cohesiveness for groups.
Data is instantly portable and users aren’t tied to the cor-
porate local area network. Administration of Timecruiser
also resides on the Web and can be accessed within any
Web browser. It provides LDAP connectivity for centralized
corporate directory database or stores configuration infor-
mation on a proprietary database.

By attaching Timecruiser’s framework of calendar
applets – Capplets – to an event, publishers may provide
additional contents in multimedia fashion such as video,
sound or animated graphics. Within a Web calendar envi-
ronment, Capplets may be used to attach interactive forms
for users to book event tickets or seats, to attach directions
and/or agendas for meetings or to get a syllabus for a
course. Timecruiser propels the Web from an online refer-
ence source to a working application environment. Its fea-
tures include:
• Web-based cross platform scheduling and event posting
• Multiple secured access levels
• Event forwarding and in-box
• Easy event editing
• Joint calendar views
• Multiple time prospects
• Assistant
• Recurring events specification
• Ticker tape event highlighting
• RSVP
• E-mail integration
• Multimedia Capplets
• Event advertisement
• Group schedule coordinating
• Alternative HTML calendar view
• Event search
• Print
• Configurable GUI and functions
• Local alerts
• LDAP directory support
• File system or ODBC/JDBC databases
• Multiple server support
• API
• Online enrollment / ticketing for events

Timecruiser is good for community members who
wish to publish events or share calendars securely, or
who want to coordinate group schedules, meetings or
resources such as people, facilities and equipment. Cur-
rent Timecruiser customers are from various market sec-
tors including education, corporation and the govern-
ment.

✰Zero G Software
✰Category: Installation Tool
✰Winner: InstallAnywhere 2.5

InstallAnywhere supports virtually every Java-enabled
platform, allowing developers to create a single universal
installer that will run on any platform. It handles all the plat-
form-specific details, and supports Windows 95, 98 and NT,
Unix (including Solaris, Linux and others), Mac OS and
OS/2. InstallAnywhere tailors itself to the user’s system,
such as setting custom icons on the Mac OS or making Win
32 registry entries.

InstallAnywhere has a Java-based installer engine that
can handle installations with thousands of files. The Speed-
Folders technology introduced in version 2.5 uses
advanced compression techniques to create installers that
are smaller and faster than other platform-specific
installers.

InstallAnywhere’s interface provides a six-step Project
Wizard for quickly building installers. For more complex

installations, an advanced mode allows developers to install
files to multiple destination locations or to set rules to install
files only on specific platforms.

One functional feature, especially for end users, is the
ability to create double-clickable application launchers.
These LaunchAnywhere executables give Java-based appli-
cations true double-clickable, nativelike icons that can be
placed on the user’s desktop, in the Windows Start menu or
in the user’s home directory. LaunchAnywhere automatical-
ly locates the correct Java Virtual Machine, configures all
runtime options, including classpath, and starts the Java-
based application automatically without any setup by the
end user.

If the client has no Java VM, InstallAnywhere can auto-
matically install one as part of the installation, eliminating
the need to download and install Java separately. The prod-
uct is fully compatible with the latest Java VMs, including
Sun’s Java 2 and Apple’s Mac OS Runtime for Java 2.1, in
addition to supporting Java 1.1.

For basic installations or an enterprise Web-based
deployment solution, InstallAnywhere is a useful tool for
deploying Java software.

✰IBM
✰Category: Java Development
✰Environment
✰Finalist: VisualAge for Java

VisualAge for Java is a Java application development
environment for building Java applications, applets, servlets
and JavaBean components. Version 1.0 offered developer
productivity, ease of use and other features. Version 2.0,
which is aimed at setting the
standard for the development
of enterprise Java solutions,
allows for the quick exten-
sion of existing data,
transactions and appli-
cations to e-busi-

ness, enabling large teams of developers to manage their
Java projects and build large-scale, high-performance serv-
er solutions.

Version 2.0 features a new high-performance compiler,
connections to more enterprise systems, team program-
ming support and exploitation of the latest in Java technol-
ogy. The Entry Edition is free from IBM’s Web site; the Pro-
fessional Edition is the tool for power users and program-
mers becoming familiar with Java; the Enterprise Edition

offers additional functionalilty to developers working in
large teams, developing for multiple platforms or extending
existing server data, transactions and applications to the
Web.

IBM’s VisualAge Developer Domain offers developers a
single access point for everything needed to build business-
critical Java applications, including Java-related samples,
education and support, as well as the ability to network with
a community of Java professionals. Solution developers can
also join IBM’s Object Connection – Partners in Develop-
ment program – to get advance copies of VisualAge for Java
and to find assistance in marketing their products directly to
VisualAge users.

InstallShield Software Corporation
Category: Installation Tool
Finalist: InstallShield Java Edition 2

InstallShield Java Edition 2, a 100% Pure Java prod-
uct, provides Java developers with the ability to create
setups that offer the InstallShield look and feel to end
users regardless of target platform or operating system.
InstallShield Java Edition 2 is easy to use. The develop-
ment wizard walks developers through the installation
process and uses the responses to its prompts to package
the installa-
tion and
app l i ca t ion
into a file
that’s read-
able by all
o p e r a t i n g
systems sup-
porting Java
V i r t u a l
M a c h i n e s
version 1.1 or
higher. Wiz-
ards guide
setup cre-
ation, and
InstallShield-
Extensions, which customize installations, allow develop-
ers to plug in their own Java-based extensions. Install-
Shield Java Edition also supports silent mode installations
and batch building via command-line access, and allows
customers to run installations directly from a Web page.
The InstallShield Installation applet enables users to spec-
ify the appropriate Java Virtual Machine for running the
installation. If a Java VM isn’t available, the applet can
download one and install it for the user. The applet then
downloads and installs the Java application via a browser
link. Using InstallShield Java Edition 2 eliminates the need
to create multiple installs for various platforms. The self-
extracting Java class file created by InstallShield is univer-
sally understood by all platforms with specified Java VMs
1.1 or higher. This package contains a wizard that takes
end users through a consistent installation process
regardless of platform. Additional new features in Install-
Shield Java Edition 2 include:
• Self-extracting installations that embed installation and

application in one file for easy launching
• Password protection for installations
• Improved compression and decompression
• The ability to create windows shortcuts anywhere on the

target Desktop – Start menu, Programs menu, Startup
folder, SendTo folder or directly on the desktop

• Launch scripts supply system properties from VMs as
arguments

• On Windows systems, selecting Help automatically
launches the Web browser

• GUI-based Extensions management

34 Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 1 1999 http://www.JavaDevelopersJournal.com

http://www.JavaDevelopersJournal.com Java DEVELOPER’S Journal 35VOLUME: 4 ISSUE: 1 1999 •

Slangsoft
www.slangsoft.com

✰KL Group
✰Category: Best Bean
✰Finalist: JClass

Java Developers using the JClass Enterprise Suite of
100% Pure JavaBeans are creating professional GUI appli-
cations. Because all JClass components are database-aware,
they bind automatically to a database, making RAD devel-
opment easy. Developers working with the newly released
Swing component kit and Java 2 (JDK 1.2) are now sup-
ported by the latest JClass releases.

JClass components support easy-to-use developer
interfaces, offer a common API on all major JDK releases
for easy migration and are supported in all popular IDEs.
The JClass “family” consists of:
JClass SwingSuite: This set of extensions and enhance-

ments for Swing in Java 2 (JDK 1.2) add the power of
MDI, wizards and thread-safe, lightweight components.

JClass HiGrid: This RAD outline grid allows development
of advanced multilevel data-bound database GUIs in
minutes, in one component.

JClass DataSource: This robust, hierarchical multiple-plat-
form data source provides the power of data binding to
components and makes drill-down data access and
updates trivial.

JClass LiveTable: This 100% Pure Java data-bound
grid/table creates data-driven tables and forms with sup-
port for text, images and lightweight components in cells.

JClass Chart: This 100% Pure data-aware Java component
enables quick and easy embedding of sophisticated
graphs and charts into applications and applets.

JClass Field: This 100% Pure data-aware JavaBean pro-
vides data input and validation for a range of popular
data types with calendars, pick-lists, spin-boxes and
combo-boxes.

JClass BWT: This collection of 100% Pure Java GUI com-
ponents enhances and extends AWT to improve the look
and quality of Java applications. The JClass Enterprise
Suite of components comes with KL Group’s Gold Sup-
port and Subscription, and includes the following fea-
tures:

• Integrated, high-level 100% Pure Java GUI JavaBeans
• The ability to work within any JavaBean-compliant IDE
• The ability to connect to multiple levels of a master-detail

relationship
• Robust database connectivity through JClass DataSource

or through an IDE’s data binding object
• JarHelper, a utility for creating a single JClass deployment

archive that contains only the JClass products that are
needed

✰KL Group
✰Category: Profiling Tool
✰Finalist: JProbe Profiler

Performance bottlenecks lurking in Java code can be
searched for and destroyed quickly using the JProbe Profil-
er. The product provides accurate time and memory profil-
ing with multiplatform support for Windows NT and Solaris
in Java 2 (JDK 1.2), JDK 1.1 and JIT environments. Designed
from the ground up for Java developers, JProbe Profiler’s
user interface and new heap reference tools find and elimi-
nate memory leaks or simply explore how code runs. JProbe

Profiler comes with a Call Graph that enables developers to
drill down to hotspots using nine performance metrics.

JProbe uses a standard Java VM licensed from JavaSoft
and instrumented by KL Group. Thus JProbe can accurate-
ly measure virtually anything to do with Java program exe-
cution from within the VM itself. The instrumented VM
combined with JProbe’s graphical-based analyzer makes
JProbe a powerful Java performance profiling and explo-
ration tool.

It also helps finish Java projects faster, and helps write
code that’s fast and memory-efficient. JProbe can eliminate
inefficient algorithms, excessive object creation, I/O block-
age, excessive thread creation, excessive method calling
and inefficient memory usage. In addition, JProbe detects
unwanted object references that are preventing objects
from being garbage-collected.

Using JProbe’s powerful GUI can teach developers
things about Java code that are hard to learn any other way.
Calling relationships and program structure – even for native
methods and third-party code with no source code – can be
probed. With JProbe, a program’s memory usage can be
watched while it runs, enabling developers to learn which
operations are causing program size to grow or shrink.

✰Rogue Wave Software
✰Category: Best Bean
✰Finalist: StudioJ

StudioJ is a one-stop solution for GUI development,
data analysis, charting and database access. The StudioJ
suite integrates four libraries of pure Java components and
classes from Rogue Wave Software and its Stingray divi-
sions: Blend.J, Grid.J, Chart.J and DBTools.J.
• Blend.J integrates Rogue Wave’s JWidgets and
Stingray’s Objective Blend to deliver more than 45 Java-
Bean components to Java developers. It provides both JFC
and AWT support, with controls that offer the same inter-
face and different implementations, rather than rewriting
code. New controls include a splitter layout manager, regu-
lar expression filter and drop-down color chooser.
• With Grid.J, developers can turn a grid into a fully func-

tional spreadsheet, with features such as automatic refer-
ence updates and circular dependency checks. Tree behav-
ior can be embedded to give users an optional treelike view
of a grid. Grid.J delivers both JFC and AWT support, with
grids that offer the same interface and different implemen-
tations – again, without rewriting code. Developers can
bind to any data source, including JDBC and ODBC. Sup-
port for DBTools.J is included when Grid.J is purchased as
part of the StudioJ suite.
• Chart.J uses Model-View-Controller architecture based
on the JavaBeans event model to provide for dynamic
updates. (Charts automatically update as underlying data
changes and the update interval or criteria are set.) With
built-in callback mechanisms, users can drill down to dis-
play underlying data. Developers can bind to any data
source, including JDBC and ODBC, and Chart.J includes
support for JFC. Support for DBTools.J is included when
Chart.J is purchased as part of the StudioJ suite.
• DBTools.J supports fine-grained error control and pro-
vides for flexible connection management. Just-in-time
binding ensures streamlined performance since implemen-
tations are created only when it comes time to execute the
object. DBTools.J has been optimized for applications using
Oracle and Sybase, but also provides connectivity to any
database that fully supports JDBC.

With integration support among the four libraries for
seamless interoperation, StudioJ provides options such as
tying a grid to a database and then feeding the data to a
chart placed within the grid. Each library is also available
separately, without the integration features.

✰Schlumberger
✰Category: JavaCard
✰Finalist: Cyberflex Open

The Schlumberger Cyberflex Open 16K smart card is
built on the Java Card 2.0 API to provide easy application
development, quick time-to-market and the most memory
for Java-based multiple applications.

The Cyberflex Open 16K Development Kit features a
PC/SC interface and fully integrates an application proces-
sor, a smart card simulator and a smart card manager.

Java-based smart
cards allow applications
from one or more
providers to reside
securely, side by side,
on the same smart
card. Multiple applica-
tion cards can provide convenience for users and differen-
tiated, market-specific products for issuers.

Smart cards, which incorporate a computer chip and
memory instead of the traditional magnetic stripe, have
been very successful in single roles – as bank cards, phone
cards, electronic tickets and so on. But like early computer
software, the programs they run are specific to a particular
manufacturer’s card and are for all intents and purposes
“carved in stone.”

Now issuers can put more than one application on a
card, securely, and modify the applications after the cards
have been issued, meaning that consumers will have cards
that can perform a range of functions – such as debit, cred-
it, e-purse, e-commerce and loyalty – whose applications
can be changed and updated. This reprogrammable quali-
ty means that consumers will be able to individualize cards
to reflect their own needs and priorities.

Schlumberger Electronic Transactions offers a flexible
portfolio of smart-card–based solutions for businesses and
communities of all kinds. The company provides cards, ter-
minals, development tools and support in open configura-
tions for operators, developers, integrators and distributors
worldwide.

36 Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 1 1999 http://www.JavaDevelopersJournal.com

37VOLUME: 4 ISSUE: 1 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Microsoft
www.msdn.microsoft.com/visualj

http://www.JavaDevelopersJournal.com• VOLUME: 4 ISSUE: 1 1999Java DEVELOPER’S Journal38

As Java takes a leap toward the next gen-
eration of enterprise computing, enterprises
get ready to deploy large-scale business
applications using Java. This article
describes how the new Enterprise Java-
Beans (EJB) technology from Sun Microsys-
tems can be instrumental in building distrib-
uted enterprise applications. We’ll first look
at the application server implemented by
Weblogic, which uses EJB technology to pro-
vide business solutions. Then I’ll discuss
how this powerful technology can be used in
the context of a true distributed environ-
ment such as CORBA.

Background
Most of you are probably familiar with

Enterprise JavaBeans by now. The EJB spec-
ification defines a server-side component
model for development and deployment of
portable, reusable, multitier and distributed
Java applications. A detailed overview of
EJB architecture and its components
appeared in the September 1998 JDJ (Vol. 3,
Issue 9), so I won’t spend much time on that
subject. But I will give you a brief overview

of the EJB environment and its components
before going into detail about the EJB-based
application server and EJB’s fit with CORBA.

Typical EJB Environment
As shown in Figure 1, a typical EJB envi-

ronment can support a variety of client envi-
ronments, including desktop clients con-
nected through a LAN, Web clients, telepho-
ny clients, smart cards and other devices.
Business logic is implemented as reusable
application components deployed in the EJB
application server. These components have
complete access to all types of data and
applications, including relational and nonre-
lational databases, flat files, live data-feeds
and legacy applications.

Sun Microsystems’ Java Platform for the
Enterprise (JPE) provides a foundation for
the development and deployment of Java-
based enterprise-class application systems.
EJB is an essential piece of the complete
JPE environment that elevates Java to a
serious application development language
capable of supporting mission-critical dis-
tributed enterprise application systems.
JPE API consists of nine Java APIs – EJB,
Java Naming and Directory Services (JNDI),
Remote Method Invocation (RMI), Java
Interface Definition Language (Java IDL),
Servlets and Java Server Pages (JSP), Java
Messaging Service (JMS), Java Transaction
API (JTA), Java Transaction Service (JTS)
and Java Database Connectivity (JDBC) –
that enable Java applications to access the
core enterprise-class infrastructure ser-
vices through a set of standard program-
ming interfaces that include EJB compo-
nents.

Some of the primary EJB components are
the EJB server and container, enterprise
beans, session objects, entity objects and
EJBObjects. The function of an EJB server is

to manage resources needed to support EJB
components. An EJB container is where an
EJB bean “lives.” It provides a scalable,
secure and transactional environment in
which EJBs can operate. The container man-
ages the life cycle of the enterprise bean. It
also generates an EJB object that is an inter-
face for the enterprise bean and represents a
client view of the enterprise bean. All client
requests directed at the EJB object (such as
a request to insert transaction, state and
security rules) are intercepted by the EJB
container (see Figure 2).

The EJBObject acts as a proxy, passing
method invocation requests to an instance
of the enterprise bean installed and execut-
ing within the container of the EJB server.
Clients use the JNDI and EJBHome interface
of the enterprise bean to locate an enter-
prise bean.

Entity Beans vs Session Beans
Entity beans represent persistent data

that’s maintained in a database or any
underlying data source. In contrast, session
beans are created by a client and in most
cases exist only for the duration of a single
client/server session. An EJB container sup-
plies a “factory” interface for creating new
instances of the enterprise bean and a “find-
er” interface for locating existing instances
of entity beans (see Figure 3).

Entity beans are transactional and can
be recovered following a system crash.
Entity objects are also implicitly persistent.
They can either manage their own persis-
tence or delegate it to their container. Enti-
ty beans usually represent a one-to-many
relationship to client(s). In a typical enter-
prise some of the examples of entity beans
would be employees, customers and
orders.

On the other hand, session beans typical-

With the advent of

Enterprise JavaBeans,

Java server-side

computing will be

like never before

by Bhaven Shah

39VOLUME: 4 ISSUE: 1 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

ly are neither transactional nor recoverable
following a system crash. They can be state-
less or they can maintain conversational
state across methods and transactions. Ses-
sion beans have to manage their own persis-
tence. They usually represent a one-to-one
relationship to client(s). Examples of ses-
sion beans are electronic shopping carts and
grocery lists.

What do enterprises need in order to
develop and deploy an EJB-based applica-
tion? First, they need to implement enter-
prise beans containing their business logic
and assemble any third-party beans into
their applications. Once they’ve done this,
they can use any enterprise server imple-
mentation provided by vendors such as
Weblogic, Persistence and EJBHome to
execute and manage their EJBs. The serv-
er provider will take care of distributed
transaction management, distributed EJBs
and other low-level system services. Since
Weblogic Inc. is an industry leader in the
Enterprise JavaBeans server market and
one of the early adopters of Enterprise
JavaBeans, we’ll discuss their application
server in the following sections.

Tengah Application Server
Weblogic Inc., which announced its

acquisition by BEA Systems as this article
was being written, is the leading provider
of Java application servers. Its first version
of the Java application server – T3, short
for three-tier – was shipped in the fall of
1996. T3 was also the first server in the
market to support EJB specification. The
name T3 then became Tengah. Tengah has
Pure Java certification and currently con-
forms to the JDK 1.1. The Tengah applica-
tion server logically integrates EJB, Web
and transaction services in one server.
With Tengah, users can easily and quickly
build, as well as deploy, server-side busi-
ness components (in the form of Enter-
prise JavaBeans). The following sections
describe major components of the Tengah
application server.

Tengah Enterprise JavaBeans
Tengah EJB claims to support all the fea-

tures of the EJB 1.0 specification. It also sup-
ports entity beans with both bean- and con-
tainer-managed persistence, as well as
“automatic” persistence on files and rela-
tional databases via container-managed per-
sistence. In addition, Tengah supports dis-
tributed transactions that permit multiple
beans that are distributed across heteroge-
neous server machines to participate in a
single transaction. Global naming with JNDI,
RSI-based security and support for multiple
invocation protocols such as CORBA IIOP,
HTTP, HTTPS and TCP are also included in
Tengah.

A unique feature of Tengah is the bean
bar for Tengah beans. The bean bar is a col-
lection of EJBs that provide access to Ten-
gah services, including login, event sub-
scribe, publish, Tengah server-side work-
space access and more. Users can develop
Tengah applications using drag-and-drop
programming of Tengah beans in any Java-
Beans-compliant IDE.

Tengah COM
Tengah also supports integration with

the Microsoft COM. Tengah’s COM compiler
provides the means to build Java-to-COM
bridges; Tengah RMI is then used to register
these objects in JNDI and provide access to
them from anywhere in the network. With
Tengah COM on the client side, existing Java
application components (like EJB objects)
running anywhere in the network can be
exported as COM business components
(such as Visual Basic, Visual C++ and Active
Server Pages).

Tengah Servlets
Tengah implements the session manage-

ment API of the standard Java Enterprise
Servlet model. Session management makes
it easy to develop Web-based applications
that need the server to remember the state
of the client transac-
tion across many
browser-Web server
(HTTPD) interactions.

Tengah Cluster
Tengah servers

can be grouped into a
cluster to enhance
the scalability and
fault tolerance of a
Web application. Clus-
tering can be used to
spread requests from
a large user communi-
ty across multiple
Tengah servers.

Tengah Zero Admin-
istration Client

Tengah’s ZAC is
designed to provide
automatic distribu-
tion and management
of application or sys-
tem software through-
out an enterprise net-
work or the Internet.
Once clients are regis-
tered with the ZAC, it
automatically ensures
that every client sys-
tem is kept up to date
without additional
user intervention.

Tengah JDBC
Tengah provides a JDBC driver with con-

nection pools for relational database access.
A connection pool in JDBC allows multiple
database connections at the same time. The
connection pool can automatically shrink
and expand depending on the load. This
means that an expanded connection pool
can gradually shrink to its initial size to
release unused database connections.

EJB Development and Deployment
Using Tengah

This section describes how to implement
Enterprise JavaBeans as well as how to con-
figure, deploy and manage these EJBs in the
runtime environment of the Tengah EJB
server.

Implementation
To implement an Enterprise JavaBean,

it’s important to get familiar with the EJB API
provided by Sun Microsystems. (Please see
the Resources section to download the EJB
API.) Three main packages are shipped as
part of the EJB:
• Package javax.ejb
• Package javax.ejb.deployment
• Package javax.jts

EJB

State Mgmt.

Transaction

Security

EJB Server/Container

Resource Mgmt.

EJB
LAN Legacy App.

DB

File
Web

Smartcard

Telephony

Legacy App.

DB

Client

EJB Home

EJB Object

EJB
component

EJB Container

EJB Server

Figure 1: Typical EJB environment

Figure 2: EJB components

40 • VOLUME: 4 ISSUE: 1 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

An Enterprise JavaBean is a class that a
developer writes to provide application
functionality. The developer can implement
the bean as either a session bean or an enti-
ty bean by implementing the appropriate
interface and declaring its type in the
deployment descriptor used while deploy-
ing the bean. Typically, the developer will
need to extend the javax.ejb.EnterpriseBean
class from the javax.ejb package. Both the
SessionBean and EntityBean interfaces
extend from this class.

For instance, a session bean can be
implemented as:

public class MyEJB implements javax.ejb.Ses-
sionBean….

And, an entity bean can be implemented as:

public class MyEJB implements
javax.ejb.EntityBean….

The methods in your Enterprise Bean will
never be invoked directly from the client.
The client uses the EJBObject, which acts as
a proxy to call the bean’s methods. The
EJBObject is a “true” network object that
gets accessed by clients over the network.
You have to create a remote interface that
will describe the business methods of the
enterprise bean you’d like the client to be
able to invoke. The method names and the
signatures listed in this remote interface
should exactly match those implemented in
the enterprise bean. For example, you might
provide a remote interface for the EJB as fol-
lows:

public interface Account extends
javax.ejb.EJBObject {

public void deposit (double amount)
throws RemoteException;

public void withdraw (double amount)
throws RemoteException;

public double balance()
throws RemoteException;
}

It’s important to note that the class

javax.ejb.EJBObject will implement the
java.rmi.Remote interface. The container
vendor will generate the implementation
code for the bean remote interface (Account
interface in the above example) at the time
the enterprise beans are installed.

For remote clients to access the enter-
prise bean, they first need to access the
bean’s “home” object which implements the
home interface of the bean. The home inter-
face lists one or more create() methods that
can be used to create an instance of the
enterprise bean. The server typically regis-
ters the home object (EJBHome) with the
JNDI. The clients have to know the location
of the namespace and the JNDI context fac-
tory class name for the home object. The
home interface for an EJB bean might look
like this:

public interface myHome extends EJBHome {
public void create () throws RemoteEx-

ception;
public void create (String str) throws

RemoteException;
}

Again, note that the class javax.ejb.EJB-
Home implements the java.rmi.Remote
interface. The container vendor is responsi-
ble for providing the home object that imple-
ments this home interface. The implementa-
tion code acts as a factory to create the
enterprise beans.

Tengah EJB Deployment Wizard
Once you’ve implemented your enter-

prise beans, you can use tools like Tengah’s
deployment wizard to configure and deploy
the beans for use with the EJB server within
your enterprise. You can use this wizard to:
• Examine existing EJBeans and their

deployment descriptor’s configurable
properties.

• Modify and persist EJBeans’ properties.
• Generate EJBean interface classes for the

EJBean execution environment.

You can invoke Tengah’s deployment wiz-
ard from the command line with:

$ java weblogic.EJBDeployWizard options

In this instance, options can be used to
get help or to set look and feel for the UI of
the wizard.

Starting and Maintaining the
Tengah Server

The Tengah server is a Java class file and
can be started from the command line.
Weblogic recommends that you start the
server with –ms16m and –mx16m to ensure
enough heap space for the server. This will
ensure better performance in case of a more
rigorous client connection load. The Tengah
server also has its own garbage collection
mechanism, purported to be more efficient
than the one provided by Java. It might make
sense in that case to turn off Java’s asyn-
chronous garbage collector. One possible
command for starting the Tengah server
could be:

$ java –noasyncgc –noclassgc –ms16m –mx16m
weblogic.Server

Weblogic also provides an administrative
tool to start up, shut down and monitor the
execution of the Tengah server.

Current State of Tengah
Weblogic is currently shipping version

3.1 of Tengah. It includes multithreaded
implementation for RMI and network con-
nection pooling. Other noteworthy features
include clustering for fault tolerance using
JTS and full EJB 1.0 support. It also claims to
have COM component integration. In future
releases Tengah plans to support integration
with JMS and other messaging middleware
such as Microsoft’s MSMQ and IBM’s
MQSeries.

EJB Meets CORBA
To add to the story of paradigm shift in

distributed enterprise computing, it would
be worthwhile to mention that OMG is
working hard to enhance CORBA to facili-
tate its adoption in the enterprise world.
the CORBA 3.0 specification, already
underway at OMG, will simplify the use of
CORBA ORBs for the development of dis-
tributed object applications and include
support for EJB specification. This will
allow EJB components to be reusable as
CORBA components. EJB architecture will
be key to middle-tier solutions in CORBA-
based applications. By treating EJB
objects as CORBA objects, clients will be
able to work with EJB components in dif-
ferent CORBA middle-tier environments
without regard to the environment of the
vendor hosting that component. A CORBA
3.0-compliant server, when encountering
EJB components, will be able to load a

Client 1

Session Beans Entity Beans Database

Client 1
State

Client 1
State

Row 1Row 1

Row 2Row 2

Row 4Row 4

Row 5Row 5
Client 1 Client 1

State
Client 1
State

Figure 3: Entity and session beans

41VOLUME: 4 ISSUE: 1 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Enterprise Solutions
Conference
www.jumpstart99.com

42 • VOLUME: 4 ISSUE: 1 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Java Virtual Machine at runtime and run
the EJB objects. The first draft for the
CORBA 3.0 specification was expected to
be released by the end of 1998.

Products like Weblogic’s Tengah are
already providing the means to support
CORBA objects within EJB containers. This
is possible since CORBA objects can be
wrapped as EJBeans within an application
server environment like Tengah.

EJB and CORBA: Complementary,
Not Competing, Technologies

CORBA provides a language-indepen-
dent distributed environment, while EJB
components enhance this environment
with portable, reusable, multitier network-
centric Java components. Thus these tech-
nologies should be viewed not as compet-
ing but as complementary technologies to
provide a distributed platform for enter-
prise computing. The EJB model integrates
well with CORBA’s distributed object
model.

One example of this is EJB’s transaction
model. EJB’s transaction architecture closely
models CORBA’s Object Transaction Service
(OTS) specification. The following section
describes the EJB transaction architecture
and its mapping to the OTS architecture.

EJB Transaction Architecture
An EJB runtime requires transaction

propagation across multiple EJB servers on
the network. This requires a distributed
transaction service with two-phase commit
to ensure recovery of transactions in case
of a network failure. The EJB specification
also requires the transactions to be able to
span multiple EJB servers so that a bean in
one server can act as a client to a bean in
another server while preserving member-
ship within the transaction. The transac-
tion control for a bean is usually specified
in the bean’s Deployment Descriptor. The
transaction could be bean managed or con-
tainer managed. Various transaction con-
trols can be specified for the enterprise
bean: TX_REQUIRES, TX_NOT_SUPPORTED,
TX-_BEAN_MANAGED, TX_REQUIRES_NEW
and so on. Session beans can implement
the SessionSynchronization interface to
receive callbacks from the transaction ser-
vice. The enterprise beans are transaction-
al. They carry the transactional state in the
form of EJBContext, which is provided to
every bean when it’s first created. The ses-
sion and entity beans carry SessionContext
and EntityContext, respectively, both of
which are subclasses of EJBContext. In
addition, an EJB vendor may choose to
provide support for client-demarcated
transactions. This would allow the client to
begin a transaction prior to invoking a
method on the bean.

Mapping OTS Components into EJB
Components

The EJB transaction model is based on the
OTS model specified by CORBA. In fact, the EJB
specification requires its transaction service to
be accessible using OTS 1.1 API. Hence, each of
the OTS components can easily be mapped to
an EJB object. For example, the Terminator
object in OTS architecture could be viewed as
an EJB container. In container-managed trans-
actions the container can either commit or roll
back a transaction, as appropriate. A transac-
tion-aware JDBC driver in an EJB environment
can act as a coordinator of OTS to register a
connection with the transaction. Similarly, an
EJB container can also act as a Coordinator to
register a bean as a Synchronization object if
the bean implements javax.ejb.SessionSyn-
chronization interface (see Figure 4).

To keep the server requirements simpler,
the current EJB specification doesn’t require
support for a nested transaction. Several
other features of OTS aren’t required by the
current EJB specification, such as explicit
transaction propagation. The JPE provides
JTS, which is a Java mapping for the CORBA
OTS. Enterprise JavaBeans support transac-
tions using JTS. The EJB container and other
transaction coordinator objects use the JTA
to interface with the underlying OTS-compli-
ant transaction service.

One other feature that I think will make
CORBA a true counterpart of EJB is the addi-
tion of directory services to CORBA’s naming
service so that JNDI API can seamlessly access
the CORBA service, or allow it to be integrated
with any other namespace services.

What’s Next?
The change in focus from client to server

in the deployment of Java has created a
demand for a component model that can tar-
get the server. Enterprise JavaBeans can sat-
isfy this demand by providing a reusable
server-side component model for the devel-

opment of Java applications based on a mul-
titier distributed architecture. The EJB com-
ponent architecture represents a giant step
forward in simplifying the development,
deployment and management of enterprise
applications. Enterprise JavaBeans will be a
core piece of the JPE, which provides access
to a core set of system services that’s neces-
sary for the development of enterprise-scale
applications systems.

An adaptation of EJB by OMG would con-
tribute significantly to its success. An inter-
esting battle is emerging between Microsoft’s
middle-tier solution and EJB technology.
Microsoft’s distributed architecture, which
consists of COM, Microsoft Transaction Ser-
vice (MTS) and MSMQ is currently more sta-
ble and ahead in terms of implementation
than the EJB architecture. The most recent
acquisition of Weblogic Inc. by one of the vet-
erans in distributed computing (BEA Sys-
tems) makes the battle even more interesting
and indicates that the arrival of Enterprise
JavaBeans may just be the beginning of a
new era in enterprise computing.

Resources
OMG: www.omg.org
Weblogic Inc.: www.weblogic.com
Sun, Inc.: java.sun.com
Sun’s Enterprise JavaBeans Page:
http://java.sun.com/products/ejb
Sun’s Java Naming and Directory Interface
Page: http://java.sun.com/products/jndi

About the Author
Bhaven Shah, a member of the technical staff at i2
Technologies, Dallas, Texas, has BS and MS degrees
in computer science. Bhaven has almost five years of
programming experience with more than two years in
Java. His current focus is client/server, distributed and
GUI software development. Bhaven can be reached at
bshah@i2.com.

Transaction Service

Terminator (container)
Coordinator (recoverable obj.)

Synchronization (SessionSynchronization)

Control Resource
(JDBC connection)

Commit()
rollback()
Commit()
rollback()

Register_resource(Resource r)Register_resource(Resource r)

Resource

Figure 4: OTS architecture

bshah@i2.com

43VOLUME: 4 ISSUE: 1 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Pervasive
www.pervasive.com/sdk-jd

44 • VOLUME: 4 ISSUE: 1 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

I recently had the
opportunity to work
with the NetBeans
Developer IDE 2.0 for
Java. Although the mar-

ketplace seems to be
flooded with application

development environments for
Java programming, the team at NetBeans
is offering a slightly different approach
toward Java development. While the vast
majority of Java-integrated development
environments (IDE) are designed to run
primarily under Windows-based operating
systems, the NetBeans folks have built
their development environment complete-
ly within Java itself. The result is a pro-
gramming environment that runs on any
platform that can support a JDK 1.1.5 envi-
ronment.

NetBeans is based out of Prague in the
Czech Republic and was founded in July of
1997. It is a privately held company with a
number of high-profile investors, including
Esther Dyson, CEO of EDventure Holdings.
The NetBeans IDE has been designed
around three basic concepts: functionality,
platform independence and extensibility.

The NetBeans philosophy is that appli-
cation developers need a powerful, robust
IDE in order to successfully develop and
deploy enterprise applications. Further-
more, the development environment
should be able to support multiple plat-
forms, even if the developer is primarily
deploying to a single environment. Finally,
the IDE itself should be extensible and sup-
port the ability to integrate new tools and
features directly into itself as necessary.

Installation
I downloaded the NetBeans installation

kit from their Web site, which is packaged
as a single 7.7 MB Installshield program.
NetBeans is offering version 2.0 of the Net-
Beans Developer, and you’re free to down-
load the software for trial purposes, non-

commercial or educational use, free of
charge. They’re in the process of complet-
ing work on an Enterprise edition of Net-
Beans that will support some additional
features, including the Cloudscape embed-
dable Java database due for release in
early 1999. The installation went very
smoothly and I was able to get the soft-
ware installed and running in only 15 min-
utes. During installation the program
searches your system for the location of
your JDK 1.1 files. The system recom-
mends version 1.1.7 of the Sun JDK, but I
was able to select the 1.1.5 release that
was already installed on my system with-
out any problems. As part of the installa-
tion, the software configures the NetBeans
development environment to use the JDK
that you select during the question and
answer phase. Although I installed the IDE
under Windows NT, I looked through the

newsgroups on the NetBeans site and on
various other Java newsgroups for com-
ments on installing the software on other
platforms such as MacOS and Linux.
In general, the product seemed to install
reasonably well on all of the various plat-
forms.

Using the IDE
NetBeans is a pleasure to look at, as

you can see in Figure 1.
NetBeans is a Java application, which is

one of the biggest differences between the
IDE and other Windows-based Java devel-

PRODUCT REVIEW

NetBeans Developer
by NetBeans

A Java-integrated development environment
built completely within Java itself

by Jim Milbery

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼

NetBeans
NetBeans, Inc.
Pod Hajkem 1
180 00 Prague 8
Czech Republic
Phone: + 420 2 8300 7322
Web: www.netbeans.com
Price: $149 / Developer

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

Figure 1: NetBeans’ Metal style

45VOLUME: 4 ISSUE: 1 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Kuck &
Associates

www.kai.com

46 • VOLUME: 4 ISSUE: 1 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

opment environments. NetBeans is devel-
oped with the Swing JDK libraries and
offers the crisp, distinctive look that you
get with Swing. The IDE provides a menu
that allows you to switch the look and
the feel of the IDE to the various styles
that are supported by Swing, including
Metal, CDE/Motif and Windows; I chose
to use the Metal style, as shown in Figure
1. One of the features of the IDE that Net-
Beans promotes is that it’s highly exten-
sible. Because the environment is written
in Java, you can actually customize it to a
larger degree than is possible with some
of the traditional, Windows-based Java
development tools. However, the IDE can
be slow from a performance perspective.
NetBeans recommends a P133 processor
with 48 MB of RAM on Intel platforms for
development. Although I was using a
P200 with 64 MB of RAM and Windows
NT4.0 SP4, the IDE routinely took over a
minute to start up from the desktop.
Also, navigating between menu choices
and panels was sluggish, and I saw simi-
lar comments from developers in the
newsgroups.

The desktop IDE is divided into a num-
ber of sections. The critical element is the
Main Window, which is displayed as the
top panel in Figure 1. The Main Window is
well organized and I was able to get to
most functions easily from the menus and
icon buttons. At the bottom left of the
Main Window panel is a set of three tabs
that switch the focus of the IDE between
the three various stages of development:
edit, run and debug. If you’re used to
working with a multidocument interface
style of development, you’ll need to

become familiar with the bevy of windows
used by NetBeans. I wasn’t able to find a
way to mimic the MDI style of interface for
the development environment. To make
the process of managing so many win-
dows easier, NetBeans offers the Work-
space concept, which allows you to
decide exactly which windows are open
during edit, run and debug. I tend to want
to see project information while I’m run-
ning and was able to use the Workspace
technology to keep the Explorer window
open during program execution. The
Explorer window, shown on the left-hand
side of Figure 1, organizes the various
parts of the hierarchy, including the
repository, templates, control panel and
environment settings. The repository
keeps track of all the file objects used by
the IDE, and the templates provide ready
access to blocks of functionality for your
projects. NetBeans claims that their IDE is
one of the most customizable interfaces
on the market, and you can see some
validity for this claim in the control panel,
as shown in Figure 2. Between the control
panel and the environment settings, I was
able to tinker with almost every aspect of
my development viewpoint.

NetBeans generates code for you and it
also keeps track of code that will be regen-
erated so you never have to step over that
code when you edit. You have complete
control over how the source code will
look in the edit window, including fonts
and colors, as shown in Figure 2. In fact,
NetBeans provides sets of preconfigured
displays that I used to rapidly change the
look and feel of the various editors. By
virtue of these two panels you can cus-

tomize all of the major components such
as editors, debug windows and output
windows to behave exactly as you wish,
and this is part of what makes NetBeans
interesting.

One of the nicer features of the product
is the MultiWindow concept, in which all
open editors appear as tabs from a single-
edit window. I was able to use this feature
to switch between editors, and you can
undock any one of the editors as desired.
There are numerous productivity
enhancements that augment your devel-
opment efforts, including the Connection
Wizard, which can construct forms with-
out requiring you to write Java code by
hand. You can click from the source object
to the target object and select parame-
ters, methods and properties. NetBeans
will create the Java code and display it for
you in the MultiWindow editor. When you
are ready to test out your code, NetBeans
provides a lightweight, built-in HTTP serv-
er so you can test your applets with all of
the constraints that’ll apply when running
from a remote Web server. Although the
current version of the software doesn’t
support JDK 1.2, you can test JDK 1.2
applications by specifying a JDK 1.2 VM
when you execute the application. The
software ships with four tutorial applica-
tions that’ll help you get acquainted with
the NetBeans environment. I found them
to be reasonable – but not exceptional –
tutorials.

Summary
NetBeans is in the process of building

an Enterprise version of the NetBeans
Developer that will include support for
features such as RMI, Enterprise Java-
Beans and JDBC. This version will also
include interfaces to version control soft-
ware, which isn’t provided with the cur-
rent Developer Edition. I would recom-
mend looking at NetBeans if you need to
develop on multiple platforms or are look-
ing for a less expensive Java IDE.

Test Environment
Client: Dell Pentium II 200 MHz, 64 MB
RAM, 4 GB disk drive, Windows NT 4.0
(Service Pack 4), ViewSonic 15-inch SVGA
monitor, 3COM Etherlink XL Adapter and
8X CD-ROM.

About the Author
Jim Milbery, an independent software consultant
based in Easton, Pennsylvania, has over 15
years of experience in application development
and relational databases. You can reach him
at jmilbery@milbery.com or via his Web site at
www.milbery.com.

Figure 2: The control panel

www.milbery.com

47VOLUME: 4 ISSUE: 1 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Sales Vision
www.salesvision.com

48 • VOLUME: 4 ISSUE: 1 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

In the November JDJ (Vol. 3, Issue 11)
we peered into the Cosmic Cup to look at
some of the Java Virtual Machines on the
market. We also discussed how a VM
enables Java to promote its “write once,
run anywhere” (WORA) cause. To recapitu-
late, the Java programming environment
may be categorized into two computing
environments. The compile-time environ-
ment provides the translation of Java
source code to bytecodes (.class files). The
runtime environment provides the interpre-
tation of the bytecodes into native, plat-
form-specific, executable instructions. A
Java Virtual Machine’s purpose is to load
class files and execute the bytecodes they
contain.

The speed of execution in the runtime
environment is crucial for the success of
the Java platform. After all, it targets sever-
al facets of the computing industry, but the
crux of the platform is still the Java pro-
gramming language itself. Several IT man-
agers are putting off a wholehearted com-
mitment to pure Java solutions because
they still aren’t convinced that it will meet
the performance requirements for their
applications. Happy programmers and cool
languages don’t put bread on the table.

This month we’ll take a closer look at
the two stages of compilation that lead to
executable Java code. We’ll also examine
the available Java code compilation alter-
natives. Java is an interpreted language. An
executed Java program typically consists of
a virtual machine that interprets byte-
codes. Interpreted languages can never be
as fast as compiled languages because the
process of interpretation consists of con-
verting high-level programming instruc-
tions into machine instructions, one line at
a time. On the other hand, natively com-
piled code is machine code – that is, the
program is already in the form of machine
instructions when it’s ready to be executed.
Obviously, the latter will execute faster.

WORA or WOCA?
Do we really need a “write once, run any-

where” solution? WORA essentially means

that the deployed version of code is byte-
code. The application is developed in the
Java programming language and then com-
piled down to bytecode. This bytecode is
shipped to the machine where the applica-
tion actually needs to run. “Anywhere”
requires that the same code should be
capable of running on different hardware
and operating systems.

What’s the alternative to code that
runs in a JVM? To achieve true native
speeds for a particular platform, the appli-
cation should execute native code (which
runs as a process spawned by the operat-
ing system as opposed to code that’s
interpreted by a VM). This should be a no-
brainer. Platform-specific optimizations
can be performed most efficiently on
native code. So how do we get native code
from Java source code that runs on every

platform? This is a bit of a dilemma.
The answer boils down to the responsi-

bilities of the players in the application
development process – the developer and
the compiler vendor. If the developers end
up using platform-specific compilers for
individual platforms, they’ll run into the
very porting headache that Java has tried
to eliminate. The responsibility of provid-
ing platform-independent executable code
falls on the guys who write the compiler. If
the same code could be compiled to differ-
ent platform executables, we’d get the best
of both worlds. This would be the “WOCA”
– “write once, compile anywhere” – solu-
tion. The approaches taken by WORA and
WOCA are illustrated in Figure 1.

Note: Neither WORA nor WOCA is feasi-
ble in a language like C or C++. The reason
is that there are many platform-specific
extensions of the programming language
itself, which means that the source code
written by developers for one platform will
differ from the source code written for

Java Code Compilation

COSMIC CUP

by Ajit Sagar

The “write once, compile anywhere” solution

Java
source code

Java
source code

Native
Compiler

Native
Compiler

Executable
Code

VM
Compiler

JVM Interpreter

bytecode

Standard Java Compilation (WORA) Native Compilation (WOCA)

Executable
Code

Executable
Code

Source Code

Compilation

Execution

Any
Deployment

Platform
Interpretation

Specific
Deployment
Platforms

Figure 1: WORA vs WOCA

49VOLUME: 4 ISSUE: 1 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Inprise
www.inprise.com

50 • VOLUME: 4 ISSUE: 1 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

another platform. One of the greatest
things Sun Microsystems has done for the
computing world is to keep a tight rein on
what goes into the Java programming lan-
guage and to make sure that it has no plat-
form-specific extensions. The result is that
source code written in the Java program-
ming language looks the same on any plat-
form.

Compiled Just in Time!
Just-in-time (JIT) compilers translate

Java bytecode into instructions that can be
sent directly to the processor. A JIT compil-
er provides a second stage of compilation
at the platform where code compiles the
bytecode. Once recompiled by the JIT com-
piler, the code will usually run more quick-
ly in the computer. Typically, JIT compilers
come with the VM and their use is optional.
The JVM passes on the .class file to the JIT
compiler; the JIT compiler compiles them
into native code for the machine that the
application runs on. The JIT is an integral
part of the Java Virtual Machine implemen-
tation. Since Java is a dynamic language,
the bytecodes are “dynamically” compiled
into machine code only when they’re
loaded.

JITs make the executable code faster
only after it’s called for the first time. In
fact, the first time the class is used, it may
actually be slower since it goes through an
extra compilation step. Therefore, JITs are
effective only when the code is used repeat-
edly. Going by the 80–20 rule (the program
spends 80% of the time in 20% of the code),
this happens most of the time and therefore
JIT compilers speed up the execution con-
siderably. In fact, when Java JIT compilers
first came out, traditional Java interpreters
were resulting in execution speeds that
were 20 to 30 times slower than compara-
ble programs written in C. JIT compilers
brought the speeds of Java code from 40%
to 60% of C/C++ execution speeds. Figure 2
illustrates the approach taken by JIT com-
pilers.

JIT is currently the predominant tech-
nology for speeding up Java applets and
applications. Almost all the compiler and
IDE vendors – including Symantec’s Visual
Café, Borland’s JBuilder, IBM’s VisualAge,
Asymetrix’s Supercede and Microsoft’s
Visual J++ – provide Java compilers that
have the JIT compilation option.

Find the “Hot Spots”!
While JIT compilers are a step up,

they’re still unable to reach the raw speeds
of native code. Sophisticated optimization
on JIT-compiled code is hard to achieve.
Also, applying these optimizations slows
the process of JIT compilation. For applica-
tions that require a larger performance

gain, another viable approach is “adaptive
optimization.”

Adaptive optimization further leverages
the 80–20 rule. The logic that drives adap-
tive compilers is that since the majority of
a program’s executable time is spent in a
small fraction of the code, it makes sense
to concentrate on making that fraction as
fast as possible. Adaptive compilation uses
a more “dynamic” and “intelligent” form of
compilation. The runtime system identifies
the sections of code that are performance
bottlenecks by continuously monitoring
the executing code. It then applies sophis-
ticated optimization techniques to speed
up execution in these critical sections of
code.

This technique is used by Sun’s much-
awaited HotSpot Virtual Machine. Funda-
mentally, HotSpot is based on compiler
technology that is an extension of the JIT
compiler technology. The HotSpot VM con-
stantly monitors the performance of the
executing bytecode. It “inlines” (remember
the C++ “inline” keyword?) methods in the
critical region for maximum performance.
Inlined methods are like static methods in
the class and are replaced by actual
machine instructions (instead of method
calls) in compiled code. Optimization in
the HotSpot compiler is achieved with the
help of a very advanced garbage collector
and a new thread synchronization mecha-
nism. Sun claims that HotSpot will make
Java execution speeds comparable to
C/C++ speeds. The compiler is expected to
be released early this year and is more
than a year late.

Native Compilers
JIT compilers and adaptive compilers are

very important for improving performance
on the client side, where the program may
be deployed on various platforms. Applets
execute by downloading bytecodes (.class
files) from specific URLs. Thus the Java
source code is compiled into bytecodes at
the machine corresponding to the URL.
These bytecodes may be downloaded to a
multitude of clients – that is, to several plat-
forms. Hence, native optimizations can’t be
performed before the code is deployed. JIT
compilers apply optimizations that aren’t
really platform specific (as they target sev-
eral platforms). They’re also limited by the
amount of time sacrificed in performing the
compilations on the fly. An additional disad-
vantage of compiling bytecodes at the
deployment machine is that decompiling
them isn’t easy. Therefore, companies can’t
prevent software piracy of their code.

The same restriction doesn’t apply to
code deployed at a single machine. In a
client/server architecture this would be the
server. Hence, code deployed at the server
can be compiled down to native code, and
global native optimizations can be applied
to it. The trade-off is that this code won’t
run on other platforms. The reality is that it
won’t need to.

Native compilers compile Java source
code down to platform-specific executa-
bles. In that sense they’re no different from
the traditional C/C++ compilers. As men-
tioned earlier, the unique feature that Java
brings to the table is that the source code is
always the same. Most IDEs provide the

Java
source code

VM Compiler

JIT Compilation

Executable Code

Source Code

Compilation

Execution

bytecode
Compilation

B.class C.class
A.class

Figure 2: JIT compilation

http://www.JavaDevelopersJournal.com 51Java DEVELOPER’S JournalVOLUME: 4 ISSUE: 1 1999 •

option of compiling Java source to native
code. However, most IDEs support only one
platform. For example, JBuilder, Supercede,
Visual Café, Visual J++ and so on run only
on NT. As a result, although you develop
platform-neutral source code in Java, you
end up deploying on a single platform when
you use a traditional native compiler.

This points toward the need for a cross-
platform Java compiler, as illustrated earli-
er in Figure 1. In other words, we need a
compiler from a single vendor that can
compile Java source code down to native
code, and that can take advantage of the
specific platform it runs on. Such a compil-
er should also support compilation of byte-
codes to support Java’s dynamic nature.
Currently, TowerJ from Tower Technologies
provides these features. It provides sup-
port for several platforms, including NT
and Solaris. Another cross-platform native
compiler under development is JOVE from
Instantiations.

What About Legacy Code?
Contrary to popular belief, the program-

ming world will never be all Java. C/C++,
Pascal, BASIC, Fortran, COBOL, Smalltalk
and others will continue doing what they
do best. Sun Microsystems recognizes this
and that’s why the Java Native Interface
(JNI) is a part of the Java VM specification.

Any vendor that provides a Java VM needs
to support JNI (Microsoft thought they
were the exception, but were recently
proved wrong). JNI allows Java applications

to interact with legacy applications written
in other languages. Using JNI, the applica-
tion or module is linked with Java code as a
kind of shared library. If your Java applica-
tion needs to interact with legacy code, you
need to make sure that the compiler you
choose supports JNI.

Cosmic Reflections
Application development in Java is even-

tually going to require a mix of the various
compiler technologies available. If speed of
execution isn’t a major concern, a tradi-
tional Java compiler may be used. If the per-
formance boost provided by JIT compilers
suffices, that option can always be turned
on. If HotSpot lives up to its expectations,
developers and managers for realtime
applications can breathe easy. And if it
doesn’t, native compilers will grab a larger
market share. On the server side, native
compilers will always find a home. Whatev-
er compiler technology is chosen for devel-
opment, one significant service that Java
has performed for the developers is that it
has shifted a large part of the burden of
supporting cross-platform applications to
the compiler vendors.

About the Author
Ajit Sagar is a member of the technical staff at
i2 Technologies in Dallas, Texas. He holds a
BS in electrical engineering from BITS Pilani,
India, and an MS in computer science from
Mississippi State University. He is a Java-certified
programmer with eight years of programming
experience, including two in Java. Ajit can be
reached at Ajit_Sagar@i2.com.

Ajit_Sagar@i2.com

Jinfonet
www.jinfonet.com

“The speed of

execution in

the runtime

environment is

crucial for the

success of the

Java platform.”

52 • VOLUME: 4 ISSUE: 1 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Last month’s issue (JDJ, Vol. 3, Issue 12)
covered the basic concepts of programming
with Java’s I/O streams, such as the difference
between byte and character streams, the vari-
ous stream classes, the concept of stream
chaining and more. We’ll conclude the subject
this month by looking at some practical uses of
these streams.

There are so many uses of streams in Java
apps that it’s almost impossible to imagine
all the ways they can be applied. Neverthe-
less, I’m going to show you several miniature
programs that demonstrate some of the
ways that Java API streams can be used. We’ll
also look at a sample (yet robust) application
that uses a mixed bag of these classes.

File Input/Output
File programming in Java is easy -- there’s

a class to open a file for reading and another
for writing to an output file. Listing 1 demon-
strates a simple copy utility (similar to the
MS-DOS “copy” and Unix “cp” commands).
The code in Listing 2 initially opens the input
and output files, then uses the following code
to copy the input file to the output file and
keeps a counter for the number of bytes
copied:

while ((read = fr.read(c)) != -1)
{

fw.write(c, 0, read);
total += read;

}

Properties
Java provides the java.util.Properties

class as a facility for working with configura-
tion files similar to the Windows INI file for-
mat that contains unique key=value pairs per
line as shown in this example:

user=anil
email=anil@divya.com
webPage=http://divya.com/people/anil/

Not surprisingly, the Properties class pro-
vides methods for reading from and writing
to configuration files. Listing 3 demonstrates
how to load a file using the Properties.load()
method and how to extract parameters from
the configuration file using the getProperty()
method. To save to a configuration file, sim-
ply use the Properties.save() method.

Executing Programs
There may be times when you need to

invoke command line programs (e.g., Unix
sed or ls), pass data to them and read their
output. To do this, you have to use the
java.lang.Runtime class to start a program
and communicate with it via its input, output
and/or error streams. The following lines
from Listing 4 run the Unix “ls -l” command
and obtain the command’s input stream in
order to read the program’s output:

Process p =
Runtime.getRuntime().exec(“ls -l”);
InputStream is = p.getInputStream();

Servlet Programming
If you haven’t worked with servlets and

are still programming using CGI scripts,
you’re missing out on some cool stuff.
Servlets are the server-side equivalent of
applets (applets without the GUI). They also
make extensive use of input and output
streams (or readers and writers) as demon-
strated in Listing 5. The following code frag-
ment from Listing 5 reads all the input sent
by the client (most likely an HTML form in a
Web browser) using the POST method and
echoes it back to the client using the output
stream:

InputStream is = req.getInputStream();
OutputStream os = res.getOutputStream();
...
while ((c = is.read(b)) != -1)

os.write(b, 0, c);

Object Serialization
Object serialization allows a developer to

save an object and all its nontransient data
to an output stream, and then restore it by
reading it back in from an input stream. For
example, if we have an “Employee&” object
that contains three data members – an
employee ID, name and salary – and we
wanted to save objects for each employee
(e.g., John Smith) to a file, we would use
code similar to this:

Employee e = new Employee(1, “John
Smith”, 55000);
FileOutputStream f = new
FileOutputStream(“JohnSmith.dat”);
ObjectOutput s = new ObjectOutputStream(f);
s.writeObject(e);

To restore the object saved above, we
would use code similar to this:

FileInputStream in = new FileInput-
Stream(“JohnSmith.dat”);
ObjectInputStream s = new
ObjectInputStream(in);
Employee e = (Employee)s.readObject();

Note that the objects that need to be seri-
alized must implement the Serializable inter-
face by using the “implements java.io.Serializ-
able” statement. However, this interface does-
n’t require any methods to be defined in the
implementation class.

Incidentally, RMI (Remote Method Invoca-
tion) makes extensive use of object serializa-
tion to exchange objects between the RMI
client and server.

Working with Streams in Memory
Working with streams in memory is just

as easy as working with any other kind of
streams. For example, if we modified the pro-
gram in Listing 1 (Type.java) to work with a
java.io.StringWriter instead of a PrintWriter,
we could rewrite that code as follows:

StringWriter sw = new StringWriter();
...
while ((read = fr.read(c)) != -1)

sw.write(c, 0, read);
...
System.out.println(sw.toString());

JAVA PROGRAMMING TECHNIQUES

Programming with
I/O Streams: Part 2

Learning a few practical uses of Java’s
I/O streams is well worth your time

by Anil Hemrajani

53VOLUME: 4 ISSUE: 1 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Standard Input, Output and Error Programming
Standard device programming can be accomplished via three sta-

tic data members of the java.lang.System class: System.in, System.out
and System.err. System.out and System.err are of type
java.io.PrintStream while System.in is simply a java.io.InputStream.
We’ve already seen a couple of examples of System.out in our listings.
Note that, like other classes, these too can be chained to achieve the
required goal.

Sample App Using Socket, GZIP, File
and JDBC Streams

Now that we’ve looked at several miniature programs, it’s time to
examine a more robust application that uses a mixed bag of the
stream/writer classes.

Figure 1 provides a global view of the hypothetical application and
is intended to demonstrate how a few lines of Java code can be
empowered if the proper TCP/IP network is in place.

A hospital in California and another in Florida connect to their pro-
cessing center (via sockets) in Virginia so they can relay information
about their patients on a daily basis. The protocol used to send the
data is simple: the first line contains the hospital name, the second
line contains a patient name, and the the remaining lines contain the
patient’s data (e.g., name, address, medical history).

The complete code for the client-side processing can be seen in
Listing 6.

<p align="center"><img
src="../../../~BUSIN~1/~PUBLI~1/IOSTRE~1/figure2.gif" border="1"
width="500" height="380">
<p align="center">

The server in the Virginia data center receives the client (Califor-
nia, Florida) data, stores a local copy in a file using GZIP compression,
then forwards the same (compressed) data to a medical reporting
agency in Europe by using JDBC to store the data in their relational
database. Listing 7 shows the complete source code for the server-
side processing.

The reporting agency then runs a program (see Listing 8) to view
the patient data stored in their relational database.

Note that I haven’t explained the programs in Listings 6
through 8, hoping that by now you’ve learned enough about Java
streams to follow the code with the help of my comments in the
source code.

Writing Custom Stream Classes
Writing your own stream classes is easy – you simply extend the

top-level classes (java.io.Reader/Writer or java.io.Filter*) and
implement the required methods. To get an idea of how to write
your own classes, take a look at the source code for the various
descendant classes in the JDK software. If you’re using an IDE
instead of Sun’s JDK to develop Java programs, look around in the
IDE’s software directories for the JDK source code (e.g., \Visual-
CafeDbDe\Java\src).

Why would you write a custom class? Most likely because you
want to process the data in a certain way when reading or writing
it. Take our backup software, BackOnline, for example, which uses
56-bit DES encryption streams when backing up or restoring data.
We had to write it because we wanted to use stream chaining and
were missing the encryption stream classes since they didn’t exist
in JDK 1.0.

Summary
By now you should have a good handle on how I/O streams work.

Keep in mind that many new APIs (e.g., Media, 2D/3D, Mail) not cov-
ered in this article make use of streams. So take a few minutes to
explore the various classes in the java.io package and get a thorough
understanding of them – it will be well worth your time if you plan to
program in Java.

About the Author
Anil Hemrajani is a senior consultant at Divya Incorporated, a firm
specializing in Java/Internet solutions. He provides consulting services
to Fortune 500 companies and is a frequent writer and speaker. He
can be reached at anil@divya.com.

Figure 1: Sample app using VariousStreams

anil@divya.com

JBuilder
JDJ Focus Issue

for only $399
(while supplies last)

Call 1-800-513-7111
Includes the Complete Evaluation CD
for JBuilder 2 with Full JBuilder 2
Client/Server Suite trial edition +
Referentia for JBuilder 2 Multimedia
Training Tutorial + Reviewer’s Guide,
White Papers, and more!

Order your copy of...

Issues will not be shipped until payment is received

Don’t miss our...

March ’99
SilverStream
Issue!
Call
1-800-513-7111
to subscribe

Java DEVELOPER’S Journal

AQ

AQ AQ

AQ
AQ

AQ

AQ

AQ

AQ
AQ

ETHAN HENRY of KL Group

JDJ: Welcome to SYS-CON Radio’s live broadcast from the
Java Business Expo. Joining us is Ethan Henry, Java evange-
list for KL Group. Thanks for coming today.
Henry: Thanks, Chad.

JDJ: There are a lot of companies here at the Expo making
announcements, debuting new products and such, and I’m
informed that for KL Group it’s the same thing.
Henry: Yes, we have a couple of announcements. We have
a new release of our JClass line of JavaBeans, and we have a
new release coming up very soon of JPro Profiler. Why don’t
I tell you about them?

JDJ: Great, go ahead.
Henry: So the new JClass 3.6 release – these were the first
JavaBeans we released and were the first set of JavaBeans
that are JDK 1.2- or Java 2-compatible. We were on the Net
with an electronic download of our Beans within 20 minutes

of the JDK 1.2 release – we had them all wrapped and ready
to go. And as soon as Sun put JDK 1.2 up for download, we
had our stuff up as well. We’re pretty proud of that, and it was
a real achievement. It was really great. The whole JClass prod-
uct line is JClass Chart, JClass Live Table, JClass Field and
JClass High Grid, and now they’re all in versions that are Java
2 Swing-compatible. And we still have versions for the previ-
ous versions of Java for JDK 1.1 and even JDK 1.2.

JDJ: Can you tell us a little more about the involvement with
Java 2?
Henry: Well, we actually have a whole new next generation
of JClass JavaBeans coming out specifically designed for the
Java 2 platform. The first one we’ve announced is Swing Suite.
Swing Suite is specifically aimed at the Java 2 platform, and it
aims to extend, enhance and provide additional components
for Swing developers giving them more capabilities to build
on top of what they already have inside the Swing component
library that’s part of Java 2.

JDJ: Now if I’m a Java developer, and I’m going out there
looking for a product like yours, why am I going to choose
yours over someone else’s?
Henry: Well we’re working closely with a lot of the develop-
ers at Sun inside JavaSoft who are doing things like the Swing
development, and we really think we’ve got THE most com-
plete solution of JavaBeans that you can get in one packaged

family on the market. There are other companies that offer
individual Beans like charts or tables or things like that, but
we’re the only supplier who gives everything in one integrat-
ed package with common APIs.

Additionally, we’re working very closely with a lot of IDE ven-
dors. So, if you’re using a development environment like
JBuilder, Visual Café or Visual H for Java – the pure Java devel-
opment environment – we’re working very closely with them
and we have a great integration. JClass JavaBeans are a great
accessory for any IDE-based developer.

JDJ: Okay, so how about the products you debuted? I
wouldn’t mind talking about JPro.
Henry: JPro Profiler 2.0 is another product we just
announced, and again, it’s offering support for the new Java
2 platform which is really great. Not only are we offering that
support, but we’ve also added a whole slew of new features.
We’re not just looking at providing incremental upgrades
every time the Java platform changes, we’re looking at pro-
viding great new functionality for developers in all our prod-
ucts. So it adds support not only for time profiling but also for
memory profiling. Developers who are having problems with
memory usage can now examine objects, see what kinds of
objects they have and see how much space they’re taking up.
This is really great functionality and you’re getting information
that you can’t find any other way without using a tool like JPro
Profiler.

GREGORY PROKTER of Slangsoft

JDJ: Welcome back to the Java Business Expo on SYS-CON
Radio. I’m joined by Gregory Prokter. He’s the COO of Slang-
soft. Welcome to the show.
Prokter: Thank you very much.

JDJ: Now I know you just announced the release of your two
new products, Emule SDK 1.3 and Slang Suite 2.0. Can you get
into those a little bit and tell us about them?
Prokter: Yes, absolutely. The Emule SDK basically is an easy-
to-use localization capability that delivers a flexible, straightfor-
ward and inexpensive Java localization solution and that can
truly be defined as write once, support all languages and run
anywhere. We’ve just announced the release of 1.3, which, on
top of all the features that we had in 1.1 and 1.2, supports Java-
Beans and Swing, and provides some additional capabilities and
features for our customers.

JDJ: So why would someone choose your product over anoth-
er like it? What’s the difference?

Prokter: Well, the Emule SDK, which is our core technology,
can localize your Java applications within minutes and it can
work with either a JDK 1.0, 1.1 or 1.2 or any other JDK from ven-
dors like Microsoft, Borland or Symantec. It provides support for
41 national languages. And the key concept here is that this SDK
doesn’t need any special fonts or native operating system lan-
guage support, and no keyboard drivers need to be installed. So
since the product is basically calculated for Java developers, all
they need is to install the kit. Then they can begin programming
in Java using the GUI provided by the SDK to enable support
for 41 languages in the Java program.

JDJ: Earlier you mentioned the Slang Suite. I know you’re very
proud of that product, so can you tell me about SlangMail and
other components of the suite? Could you tell us what makes
you so proud of it?
Prokter: We got so excited and proud of our core technology,
Emule SDK, that we decided to build something equally nice on
top of it. Slang Suite included four ready-to-use shrinkwrap busi-
ness programs that do daily tasks like browsing, chatting, e-mail-
ing and word processing, and does it for 41 national languages.
In other words, running under Windows 95, an end user could
send an e-mail in Japanese or Italian while receiving an e-mail
in Russian or Hebrew. So, this e-mail we call SlangMail is really
unique because it can handle all the languages, is written 100%
in our Java and doesn’t require a recipient to have that Slang-
Mail package in order to view the foreign text. It uses a very spe-
cial technology. It’s stand-alone technology that enables the
recipient to actually view messages in a foreign language. That

viewer is connected to our server and from that server the nec-
essary fonts and input methods are downloaded. That concept
enables the recipient to see the message in its original language
without actually using any localized operating system support,
without having installed any fonts or input methods – basically
without any worries or even having to think about it. That’s what
makes this package so unique, and I believe it makes it must-
have software for any international user or user who speaks
more than one language.

JDJ: You’ve mentioned some of your products and how inno-
vative they are, but unfortunately technology changes; there-
fore, what’s in the future for Slangsoft?
Prokter: Well, we’re looking to expand on the success of Slang
Suite and to continue to add more languages to our end user
applications. I know we’re looking into adding Devanagari for
our Indian-speaking users, and we’re looking to get more Asian
languages into our core technology and end applications as well.

We’re looking to add more capabilities to our word proces-
sor and to do a complete integration of all the tools, thereby cre-
ating a complete communication center for the end user. That
center will provide end users with the capability to do e-mailing,
chatting, browsing and word processing in any national lan-
guage and it’s all going to be integrated.

About the Author
Chad Sitler, host of SYS-CON Radio, is SYS-CON Interactive’s
senior Web designer. He also runs a Web design company, Logos
Web Design. Chad can be reached at chad@sys-con.com.

SYS-CON RADIOSYS-CON RADIOSYS-CON RADIO S

YS
-CON

R
A

D
IO

w
w

w
.s

ys-con.com

INTERVIEW
Broadcast live at December’s Java Business Expo in the Jacob Javits Center in New York City, SYS-CON Radio’s
Chad Sitler spoke with Ethan Henry of KL Group and Gregory Prokter of Slangsoft about their new products.

55VOLUME: 4 ISSUE: 1 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

MecklerMedia
www.mecklermedia.com

56 • VOLUME: 4 ISSUE: 1 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Java
Developers

Journal

SYS-CON
Interactive

57VOLUME: 4 ISSUE: 1 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Java
Developers

Journal

SYS-CON
Interactive

58 • VOLUME: 4 ISSUE: 1 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

It’s true that you don’t need a computer
degree to know how to program. However, to
do it with the kind of quality that allows for
easy maintenance and change is another mat-
ter. As we all know, based on Software Engi-
neering (SE) principles, a software product’s
life cycle consists of analysis, design, imple-
mentation and testing. Most people seem to
spend the majority of their time on the latter
two phases while forgetting about or putting
less emphasis on the former two. This is wrong,
especially in the implementation phase. Imple-
mentation should constitute the smallest part
of the whole development time. Part of the rea-
son why programmers have to spend so much
time and effort on the implementation – and
then later on the testing – is from not having a
good design in the first place.

In this article I’m assuming that the
requirement analysis phase of software devel-
opment is fully understood so I can focus this
article on the design of software products.

According to object-oriented analysis and
design (OOAD) in SE principles, objects in a
system should exhibit the two most impor-
tant properties: being highly cohesive and
lowly coupled. There are various ways to
design a highly cohesive and lowly coupled
object in Java. The way that I’m sharing with
you in this article is based on the Java 1.1
Delegation Event Model.

I’m naming the objects radio broadcaster
and radio listener, based on their roles in the
design. The reason I’m calling them radio
broadcaster and radio listener is because of
the similiarity between how these objects
work and how radio broadcasting stations
play a role in our daily lives.

For example, in this country (or, within a
software product) anybody (or, an object) can
set up a radio station and become a radio
broadcaster. In this way, the radio broadcast-
er (or, object) becomes a source of informa-
tion (or, becomes the provider of new service
for the system) for the listeners (or, objects) in
need of that information. Since in real life
radio programs change every day, even
though the interests of radio listeners tend to
be the same (or at least, they don’t change as
often as radio programs do), the radio broad-
caster’s role is reserved for those objects

that constitute the dynamic part of the soft-
ware components.

Therefore, a new employee who has just
joined a company or who hasn’t had enough
experience with an existing software product
can be suitable for developing radio broad-
caster objects. It can be a child or a subclass
that provides new services for the system.

By now you must have realized that the
radio listener’s role is assigned to the soft-
ware components, and that radio listeners
are akin to those objects or classes that con-
struct the core components or base frame-
work of the whole software system. These
radio listeners are the objects that are most
likely to be stable and that require the least
number of changes (if any) to the software
system. A parent (superclass) or a container
object that needs to be extended to provide
new functionality is one of those objects.

This analogy, however, is not rigid,
because in this design model any object can
be a radio listener or a radio broadcaster.
Remember that it’s always good to plan early
and to choose wisely so as not to affect the
total development efforts in the later phases.

Keeping this analogy in mind, let’s see
how we’re going to implement this design. In
order for radio broadcasters to “transmit”
events to radio listeners, they have to imple-
ment a custom interface called a Radio-
Broadcaster interface. Just like any radio lis-
tener who wants to “tune in” to the informa-
tion sent by a radio broadcaster, the listener
has to implement a Radio-BroadcastListener
interface (see Listing 1).

So, for example, if a class A needs to
become a radio broadcaster, class A would
implement RadioBroadcaster interface and
define its corresponding interface methods
(see Listing 2).

The benefit of having a RadioBroadcast
object inside RadioBroadcaster is obvious –
one doesn’t have to redefine all the methods
of RadioBroadcast class in all the objects that
choose to become radio broadcasters if there
are any changes! RadioBroadcast class can be
modified (if there’s a need to do so) without
affecting the radio broadcaster objects as
long as the signatures remain the same.

To make life simple, let’s assume that

class B would like to become a radio listener
class and is interested in listening to any-
thing broadcast by class A. So class B imple-
ments RadioBroadcastEventListener, as seen
in Listing 3.

The two interfaces make use of the follow-
ing broadcasting channel classes in the
process of event communications, i.e., Radio-
Broadcast and RadioBroadcast-Event – which
are mainly extended from java.util.EventOb-
ject (see Listing 4).

You may wonder why a class called Ser-
viceBroker suddenly cropped up in the exam-
ple of class B, acting as a radio listener. For
the moment, let’s just assume that the class
will return an object reference to class A. (The
real justifications will become clear later on.)

Sounds simple, right? Yup, but a problem
arises. One may ask, What happens if an
object needs service or data immediately and
without delay? That’s a question that specifi-
cally involves a term called nonblocking oper-
ation. In a nonblocking operation (method in
this case), data and service have to become
available before a method returns or contin-
ues processing. As is well known, event prop-
agation takes time. So, the time when service
and data will become available (based on the
radio broadcast events) is unpredictable.

In solving this problem, I’ve come up with
a way to always make service and data avail-
able to a requesting object. An object that
provides a service need not be a radio broad-
caster or a radio listener, but it’s a duty for
this object to keep on updating (as necces-
sary) the type of data required for any inter-
ested objects. This data is handled and man-
aged by another intermediate object called a
ServiceBroker. Once data is made available
and is managed by a ServiceBroker, any
requesting objects will then retrieve the data
directly from the service broker without
going through a radio broadcasting channel.
This eliminates the process of a source (or,
radio broadcaster) having to send an event to
a listener, and also eliminates the overhead
of having to wait or listen for the answering
data (or, feedback) from the listener.

Do we deviate from our original radio
broadcaster/listener analogy here? Not at all.
In real life, whenever a radio station wants to
get feedback on the popularity of a certain
program that’s been broadcast to the public,
the station will hire an agent or agency to get
this information (or, feedback) and report on

Anybody can build an application,
but can anybody design one?

by E Ming Tan

Java–The Software Design

JAVA DESIGN TECHNIQUES

59VOLUME: 4 ISSUE: 1 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

it. This feedback agency is akin to the Ser-
viceBroker object. Radio stations don’t visit
your house to get information, but they do
hire agencies to get the feedback they need.
Thus, based on this analogy, the role of a ser-
vice broker can’t be ruled out. Listing 5
shows an example of ServiceBroker codes.

I suppose at this point you can under-
stand why we used ServiceBroker.getClass-
A().addRadioBroadcastListeners(this). And
there’s another benefit to using ServiceBro-
ker. If you take a look at the class B source
code that we’ve previously discussed, you’ll
find that before listening to an event generat-
ed by a radio broadcaster object, there’s no
need to know what type of object it belongs
to! So once again: if in the future the role
played by class A, as a radio broadcaster for
class B, is replaced by class C, then you won’t
have to change the codes in class B. This is
because when class B calls ServiceBroker.get-
ClassA(), it won’t know that a ServiceBroker
has returned class C instead of class A – as
long as the method signature is the same.

The other issue that should be taken into
consideration before using this design model is
performance. It’s indeed slower, due to event
passings relatively compared with direct
method invocations. However, I think this
design model is much better and worth the
effort since it saves a lot of problems with main-
taining the codes in later development stages.

One may need to consider which part of
the software will use this design model and
which part won’t, as it can impact the per-
formance if used incautiously. Programmers
should realize that with this design model,
the messages sent by a radio broadcaster
object will have to be unique, otherwise
they’ll be interpreted by the wrong radio lis-
tener! The way I’ve suggested is to use a nam-
ing convention such as packagename.class-
name.eventname. Not having different sets
of event channels for different groups of
objects will save programmers a lot of effort.

One last rule of thumb (from my experi-
ence) is that you should make the radio lis-
tener class an inner class of class A if it’s to
process the radio broadcasting events gener-
ated from within class A (called intra-events),
and put it outside of class A if it’s to handle
radio broadcasting events received from out-
side of class A (called external events).

This MVC-style design not only allows
programmers to have highly cohesive and
lowly coupled objects, but it also allows pro-
grammers to decouple the GUI of an applica-
tion from its data model. Thus the user inter-
face of an application can be thoroughly
revamped without the need for any changes
to the underlying data model of the applica-
tion. All swing components are implemented
with this design pattern in mind.

In short, you add tremendous value to your

company or client by knowing how to design
an application, not just build it. Without a
methodology covering the details of how you’ll
partition your application, you’re bound to
make costly mistakes. Therefore, you should
design your system out of small, independent
objects. Also, since smaller modules are less
complex, new employees can better learn and
understand their tasks by being able to focus
on the relevant object. And, as they work on
more objects over time, they’ll be able to devel-
op a broader understanding of the system.

Resource:
Using the JDK 1.1 Delegation Event Model:
sunsite.compapp.dcu.ie/IJUG/javaone/ses-
sions/slides/TT21/events-title.html

About the Author
E Ming Tan was the chief architect of paging and
intranet applications at Singapore Telecom. He has
worked with Renaissance Software on a JDBC-based
Java application, and has worked with LearningByte
International – a company that provides customized
JFC-based training programs.

Wall Street
Wise

www.wallstreetwise.com/jspell.htm

futurewave@iname.com

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

LPC
Consulting
Services

www.ilap.com/lpc

60 • VOLUME: 4 ISSUE: 1 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Hypertext is wonderful. It allows the
Webmaster to link from any page to mil-
lions of other computers all over the
world. Unfortunately, the Web pages
you find will only have the links that
were placed by the Webmasters. What if
you want more information about a
word or a phrase on a page and there’s
no link?

This brief article shows how to add
JavaScript code to your bookmarks – or
favorites – thereby allowing you to do
some fancy linking where no links exist.

For example, if a Web page contains
the word ennui and you want a definition
for it, you could hunt through your book-
marks for Webster’s Dictionary, go there,
type the word in, go back to your original
page, check the spelling of the word, find
your way back to the dictionary again
and then type it in correctly. Instead, this
tiny program allows you to select a word
and use a bookmark to search the dictio-
nary for it. A click to your browser’s
“back” button and you’re back again (see
Listing 1).

To put this code into a Netscape book-
mark, first create a new bookmark in
your personal toolbar folder (or any-
where else). Then edit bookmarks and
change the properties of your new book-
mark. Change the name to “Webster for”
and the location (URL) to that JavaScript
code, starting with the javascript: tag
instead of the usual http:// tag. Now dou-
ble-click on a word from any document
and you can look it up in the dictionary
with one click.

This works because of a new feature
added to Netscape Navigator 4.0: the abili-
ty for JavaScript to detect what text has
been selected by the user. When the user
uses the mouse to highlight (or select)
text in a document, the document.getSe-
lection() method will return a string con-
taining the text.

But there are a few problems with this
code. First of all, it doesn’t work in
Microsoft Internet Explorer (MSIE). MSIE
has a different way of detecting current
selections. Second, this code won’t work if
you select text from a framed HTML page.

The text you select is in the framed docu-
ment, not the top document, so this code
won’t see the selection. Solving these two
problems is a bit tricky.

In MSIE 4.0 the document object has a
selection property that returns the selec-
tion object. You can create a text range
object from the selection object by using
the createRange() method. Then you can
use the text property to get the selected
text. See: <http://msdn.microsoft.com/-
developer/sdk/inetsdk/help/dhtml/refer-
ences/objects/obj_document.htm>.

Doing this is incompatible with Net-
scape’s text selection model but that’s
okay because you’ll only be using these
bookmarks in one browser anyway. We’ll

just make two different kinds of book-
marks to cover the two different browsers
(see Listing 2).

Note: We could use guard statements to
make the same code work in both
browsers, but in this case, why bother?
You’ll only be using the code in one brows-
er anyway.

The next problem – detecting text
selections in framed documents – is
much harder. We need to walk through all
the frames in the parent document and
all the frames in each of those frames,
recursively, to detect the text selection
(see Listing 3).

What a mess! The JavaScript bookmarks
all have to be on one line in order to work as
bookmarks, but it makes them hard to read.
Expanding the code and adding some com-
ments will make it easier to figure out what’s
going on (see Listing 4).

We use the A and C variables to make it
easier to change the JavaScript as the folks
at Webster’s update their CGI programs,
and to standardize the program for other
search engines.

See Listing 5 to see how to do the same
thing with MSIE.

If you look carefully, you’ll notice the
MSIE process for selecting text and a
slightly different way to index the frames
array.

MSIE calls them favorites instead of
bookmarks. To set this favorite in MSIE,
add a new favorite and create it in the links
folder. Change the name to “Webster for,”
then use the right mouse button (or
Alt/Enter) to change the properties of the
new favorite. Under the Internet shortcut
tab, change the target URL to the
JavaScript code in Listing 5, including the
javascript: tag instead of the usual http://
tag. An error message will appear that you
can safely ignore for now. (see Figure 1).

The error message indicates that MSIE
doesn’t seamlessly support javascript:
favorites. There may be further problems
getting them to work if MSIE isn’t your
default browser. To set MSIE as your
default browser, view the Internet options,
then select the Programs tab. Check the
box to tell MSIE to check if it’s the default
browser, and restart MSIE (see Figure 2).

Note: Of course, this won’t work if you
want Netscape to be your default browser.

JAVASCRIPT & WEB TECHNIQUES

by Ken Jenks

Putting JavaScript
Bookmarks to Work
JavaScript can help your bookmarks

search the Web with better, faster results

“You can use

these techniques

to add a little

JavaScript power

to every Web

site you visit.”

61VOLUME: 4 ISSUE: 1 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

If Netscape is your default browser you
can still use Netscape javascript: book-
marks, but not MSIE javascript: favorites.
You’ll run into errors if you try to use both.
If MSIE is your default browser you can use
both with no trouble.

In Listings 3 and 5 we used two variables,
A and C, to describe the URL of the CGI pro-
gram used by the search engine. There are
several other options for searching different
kinds of engines around the Internet. Use
the JavaScript code above and substitute
the different values for A and C below:
1. Searching AltaVista:

var A='http://www.altavista.digital.com/
cgi-bin/query?pg=q&stq=20&what=
web&kl=XX&q="';var C='"',

2. Searching HotBot:

var A='http://www.search.hotbot.com/
hRes-ult.html?MT="';var C='"';

3. Searching Excite:
var A='http://search.excite.com/
search.gw?-search="';var C='"';

4. Searching DejaNews:
var A='http://www.dejanews.com/
dnquery-.xp?QRY="';var C='"&default-
Op=AND&svcclass=dncurrent&max-
hits=20&ST=QS&format=terse&DBS=2';

How do you figure out the values for A
and C in order to harness the power of
another search engine? It’s a little tricky.
You must analyze the HTML form used to
start the search, and set up A and C to
encode all of the variables, using
METHOD=GET.

Let’s visit <http://www.lycos.com/>.
There’s a search form there and it already
uses METHOD=GET. Search for a word –
say fiction – and look at the URL of the
results page:

<http://www.lycos.com/cgibin/pursuit?match-
mode=and&cat=lycos&query=fiction>

Now we can construct A and C accord-
ingly.

5. Searching Lycos:
var A='http://www.lycos.com/cgi-bin/
pursuit?match-mode=and&cat=lycos&
query=';-var C='';

Here’s one that doesn’t quite fit the pat-
tern. You can select a person’s name from
the text of a Web page and then use this
code to search switchboard.com (see List-
ings 6 and 7).

Listing 7 is a little different because we
need to split the selection into a first and
last name, then send those as two different
variables.

A Related Technique
Here’s another little JavaScript book-

mark/favorite that works in both MSIE and
Netscape. It searches AltaVista to find
external links to the current Web site. You
can use this bookmark/favorite to find
related sites as well as to gauge the rela-
tive popularity of a site (see Listing 8).

Netscape Communicator 4.06 added a
“What’s Related” feature that uses a cen-
tral database of related Web sites from
Alexa. Listing 9 shows how you can add
this capability to other browsers.

Conclusion
You can use these techniques to add a

little JavaScript power to every Web site
you visit. If you find another use for the
techniques you’ve learned here, drop me a
line.

About the Author
Ken Jenks has been programming for more than
23 years and has been on the Internet since
1984. He holds a BS in computer science and
an MS in aerospace engineering, and is working
on a Ph.D. in mechanical engineering. In his day
job he works for the federal government. Evenings
and weekends, he runs a Web-based publishing
company called Mind's Eye Fiction (tale.com). He
can be reached at MindsEye@tale.com.

MindsEye@tale.com

Figure 1: Microsoft Internet Explorer error message when using javascript: favorite

Figure 2: How to configure MSIE to enable javascript: favorites

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

62 • VOLUME: 4 ISSUE: 1 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Espial Group Releases Kalos
Espresso 3.0
(New York, NY) – Espial Group,
Inc., released Kalos Espresso
3.0, their third-generation Per-
sonal Java GUI toolkit. Kalos
Espresso is the industry’s only
lightweight embedded Java GUI
toolkit that develops applica-
tions for Java technology-based
devices such as PDAs, smart
phones, set-top boxes and hand-
held, mobile and other Internet
devices. The corporate mobile
and handheld device market is
emerging quickly, and Kalos
Espresso provides manufactur-
ers a significant time-to-market
advantage for developing
focused applications that target
the various vertical markets
including medical, courier, real
estate, retail and sales force
automation.

For more information call
888 4ESPIAL, e-mail
contact@espial-group.com, or
visit www.espial-group.com.

KL Group Adds New Heap
Analysis Tools to JProbe
Profiler 2.0
(Toronto, Ont.) – KL Group
Inc., a provider of Java compo-
nents and advanced develop-
ment tools, has released a new
version of its advanced Java
profiling and analysis tool,
JProbe Profiler 2.0. The tool
that made it easy to search and
destroy performance bottle-
necks in Java code is now
being enhanced by powerful
new heap analysis tools that
help find and eliminate memo-
ry leaks. In addition to compre-
hensive time and memory pro-
filing with an intuitive call
graph interface, developers will
be able to use JProbe Profiler

2.0 to profile applications writ-
ten on either Windows or
Solaris using the Java Develop-
ment Kit 1.1 and 1.2 software.
The announcement coincided
with Sun’s announcement of
the availability of JDK 1.2 made
during the Java Business Expo.

For more information visit
KL Group’s Web site at
www.klgroup.com.

Sun’s Java Software Selects
Sedona to Showcase New
Java JDK 1.2 Technology
(Limerick, PA) – Sedona
GeoServices, Inc., a Scangraph-
ics company, announced that it
has been selected to join Sun
Microsystems, Inc., to show-
case the power and perfor-
mance of Sedona SpatialVision.

SpatialVision provides easy-
to-use, timesaving features to
optimize a business’s rapid
return on information invest-
ments by exploiting the
geospatial components of busi-
ness data. By displaying geo-
graphic information on maps,
companies can use SpatialVi-
sion to better manage
accounts, provide visual deci-
sion support information and
optimize site planning. Spa-
tialVision enables spatial infor-
mation to be more easily
queried, distributed and
viewed through the entire
enterprise.

For more information visit
their Web site at www.sedona-
geo.com.

Rapid Logic
Announces 2.2
Release of JavaControl
(Alameda, CA) – Rapid Logic
Inc., has released JavaControl
2.2, a software development kit
that provides SNMP support,
increased power and reduced
development time for Java-
based networked device man-
agement.

Version 2.2 of JavaControl
unleashes the full power of
Java for managing a device’s
fundamental data elements
without requiring an embedded
Java Virtual
Machine,
expensive
dedicated
consoles or
any Java
program-
ming exper-
tise. Compa-
nies embracing JavaControl
include leaders in the network-
ing, datacom and telecom
industries.

For more information con-
tact the company at
www.rapidlogic.com.

Cloudscape Ships New
Generation of Embeddable
Java Database
(Oakland, CA) – Cloudscape,
Inc., has enhanced the indus-
try’s first embeddable Java
database designed for distrib-
uted, off-line and mobile com-
puting. The new versions of
Cloudscape are designed to
simplify the deployment and
management of mobilized
applications with two signifi-
cant technology innovations,
including VTI for data integra-
tion and LUCID for sophisticat-
ed application synchronization.
More than 200 companies now
rely on Cloudscape for distrib-
uted, mobile and “occasionally
connected” computing solu-
tions.

For more information visit
their Web site at www.cloud-
scape.com.

(Columbia, SC) –
DevTech, Inc., has
made available their
latest product, SiteSurfer,
a powerful and easy-to-use
searching and navigation soft-
ware application for Web
sites, networks and local files.
SiteSurfer allows Web site
administrators to provide vis-
itors to their site with power-
ful searching and navigation

capabilities independent of
the facilities provided by

their Web-hosting ser-
vice. SiteSurfer also
supports searching

content on hard drives
and local area networks,

with built-in support for text,
HTML, Ami Pro, Windows
Write, Microsoft Word,
Microsoft Word for Windows
and WordPerfect files.

For more information call
803 790-0923 or visit
www.devtech.com.

(New York, NY) – Java Devel-
oper’s Journal‘s internation-
al newsstand sales doubled in
1998, according to the data
obtained from the Curtis Cir-

culation Company, worldwide
distributor of SYS-CON Publi-
cations. JDJ is making plans
to introduce German and
French language versions.

DevTech Announces
SiteSurfer 1.0

The Java Developer’s Journal billboard at Times Square

Java Developer’s Journal’s International Sales Double

63VOLUME: 4 ISSUE: 1 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Object
Management

Group
www.omg.org

64 Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Telecom Italia Deploys
Jacada from CST
(Atlanta, GA) – CST announced
that Telecom Italia, the principal
provider of domestic and inter-
national telecommunication ser-
vices in Italy, has licensed Jaca-
da from CST to deploy Java
graphical client access for its
mainframe applications. The ini-
tial project
improves
the ability
to track
how tele-
phone calls are routed through-
out Telecom Italia’s national
telecommunications network,
consisting of more than 300
local networks connected by a
private IP backbone.

You can visit CST’s Web site
at www.cst.com.

Secant Technologies
Announces Secant Extreme
Enterprise Server
(New York, NY) – Secant Tech-
nologies, a provider of advanced
software technology for building
multitier applications, has
announced the availability of
Secant Extreme Enterprise Serv-
er for Enterprise JavaBeans.

Secant Extreme Enterprise
Server for EJB provides a com-
plete environment for assem-
bling, deploying and maintaining
scalable, multitier business sys-
tems. The product is based on
Secant’s time-tested and proven
Object Transaction Monitor and
object data management tech-
nology. This technology
includes superior implementa-
tions of CORBA ORBs and ser-
vices such as transactions, secu-
rity, persistence, events, concur-
rency and locking.

For more information visit
their Web site at
www.secant.com.

Network Design System
Powered by Graph Layout
(Berkeley, CA) – Tom Sawyer
Software, a vendor of graph lay-
out technology, has incorporat-
ed its Graph Layout Toolkit
within NetSuite Advanced Pro-
fessional Design, a network
design system that automates
network design, validation and
documentation. The Graph Lay-
out Toolkit provides scalable
network layout components for
visualizing large multilevel net-
work designs. NetSuite
Advanced Professional Design
helps network professionals cre-
ate and maintain a living model
of their network, thereby
enabling them to evolve their
networks to meet growing busi-
ness demands accurately,
promptly and efficiently.

For more information visit
www.tomsawyer.com.

Data Representations
Releases Simplicity
for Java 1.1
(New York, NY) – Data Repre-
sentations, Inc., is launching
version 1.1 of Simplicity for
Java. It’s written completely in
Java 1.1 and runs on any Java-
enabled platform, including
Linux, OS/2, Solaris, AIX, HP-
UX, Windows 95/98/NT and
others.

By using the Simplicity for
Java IDE, developers build
through a
visual mode
that is instant-
ly updated to
reflect any
changes made
to the program’s source code.
This reduces development
time, promotes programming
accuracy and challenges the
need for the traditional three-

step development
practice of code,
compile and test.

For more infor-
mation visit their
Web site at
www.datarepre-
sentations.com.

BEA WebLogic
Promotes New
Vice President
of Marketing
(San Jose, CA) –
BEA WebLogic’s
Katherine Barn-
hisel has been
named BEA’s vice

president of marketing. Barn-
hisel visited the JDJ booth
during the recent Java Busi-
ness Expo in New York.

(New York, NY) – NetBeans
has announced that its Java
IDE, NetBeans DeveloperX2,
supports and runs on Sun
Microsystems’ Java Develop-
ment Kit. This latest release
of the JDK provides a rich fea-
ture set of new class
libraries and tools, making
it easier than ever for
developers to create
portable, distributed, enter-
prise-class applications.
Sun’s announcement of the
availability of the next ver-

sion of the JDK was made
during the Java Business
Expo in New York.

The final release of Net-
Beans DeveloperX2 2.1 is
available this month. A con-
current version supporting
JDK 1.1.x will also be avail-
able. A full release of this edi-
tion of the IDE is due this
spring.

For more information visit
their Web site at www.net-
beans.com.

NetBeans Announces
Support for the Java
Development Kit 1.2

(Newton, MA) – Snowbound
Software has announced the
release of version 2.0 of its
RasterMaster for Java-imaging
components. Based on its
RasterMaster technology,
the newest Java version
offers more capability and
functionality than before.

One of the new fea-
tures available with
RasterMaster for
Java version 2.0
is its capability

to print high-resolution
images from within Java.
RasterMaster for Java aids
the language’s promise of
“write once, run anywhere,”

as the printing dilemma
has now been solved by

Snowbound’s research and
development team.

For more information call
617 630-9495, e-mail

salesp@snowbnd.com, or
visit their Web site at
www.snowbnd.com.

RasterMaster for Java Version 2.0 Released

Katherine Barnhisel visits the JDJ
booth at the Java Business Expo

• VOLUME: 4 ISSUE: 1 1999

Java DEVELOPER’S Journal

ABLE SOLUTIONS
Enter the realm of browsable store building and administration

– from your browser. Build “your_site.com” with secure Merchant
Credit Card Processing. Maintain inventory, add discounts and spe-
cials to keep your customers coming back. Increase sales with cross
selling and membership pricing.

You can reach Able Solutions at www.ablecommerce.com or at
www.ablesolutions.com.

11700 NE 95th Street, Suite 100, Vancouver, WA
360 253-4142

▲

ALLAIRE CORPORATION
At Allaire, our focus is to empower developers with the tools

and knowledge to deliver on the promise of the Web as a platform
for crucial business applications. We offer a wide range of flexible
programs, including professional education, consulting, technical
support and partner programs that complement our existing docu-
mentation and online developer’s center.

You can contact Allaire at www.allaire.com.

One Alewife Center, Cambridge, MA 02140
888 939-2545

▲

CATOUZER INC.
With Synergy 1.0 Web application framework, creating custom

Intranet applications is a breeze. The Synergy Application Develop-
ment Kit (ADK) gives you the tools to rapidly develop your custom
apps, which can be fully integrated and managed under the Appli-
cation Services Layer (ASL).

For more information contact Catouzer at www.catouzer.com.

1228 Hamilton Street, Suite 501, Vancouver, B.C. V6B 2S8, Canada
604 662-7551▲

EPRISE CORPORATION
If your customers are looking for a content management solu-

tion, Eprise Participant Server can save you time and resources. Par-
ticipant server is a flexible content management framework that
enhances high-value business relationships through the delivery of
timely, targeted, Web-based communications. Get in touch with us
today (www.eprise.com) to learn more about the Eprise Participant
Server FastStart Kit for Allaire ColdFusion Developers.

1671 Worcester Road, Framingham, MA 01701
800 274-2814

▲

THE IGNEOUS GROUP, INC
The Igneous Group provides custom solutions for e-commerce

business information systems and dynamic content publishing. We
build systems to your specifications and integrate them with your
existing backoffice data and business infrastructure. We can help
you get your site online, or identify how to make it function more
efficiently.

For more information, check out The Igneous Group at
www.igneous.com.

541 Seabright Avenue, Santa Cruz, CA 95062
877 469-ROCK

▲

INTERMEDIA, INC.
Our advanced virtual hosting packages (powered by Microsoft

Windows NT and Internet Information Server 4.0) offer an environ-
ment supporting everything today’s advanced Web developer or
sophisticated client could ask for. Complete ODBC support is avail-
able on plans B and C. We support Microsoft Index Server on all
hosting plans.

Contact Intermedia, Inc., at www.intermedia.net.

953 Industrial Avenue, Suite 121, Palo Alto, CA 94303
650 424-9935

▲

LIVE SOFTWARE
The power of Java and the simplicity of ColdFusion, <CF_Any-

where> gives ColdFusion programmers the ability to leverage all
the power and flexibility of Java using the familiar ColdFusion
Markup Language (CFML). <CF_Anywhere> was perfected for CF
developers, CF administrators, ISPs and everyone.

For more information about <CF_Anywhere>, go to www.cfany-
where.com.

5703 Oberlin Drive, Suite 208, San Diego, CA 92121
408 996-0300

▲

VIRTUALSCAPE
Why host with Virtualscape? Nobody else on the Internet

understands what it takes to host ColdFusion like we do. From For-
tune 500 extranets to e-commerce sites and more, developers rec-
ognize our speed, stability, reliability and technical support.

Virtualscape can be reached at www.virtualscape.com.

215 Park Avenue South, Suite 1905, New York, NY 10003
212 460-8406▲

An ad in the Java
Marketplace can bring

you more business! Expose
your product or service to

over 30,000 registered
ColdFusion users.

For more information, contact
Carmen Gonzales at 914 735-0300 or

carmen@sys-con.com.

▲

66 • VOLUME: 4 ISSUE: 1 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

In the final months of 1998 it was worth reflecting on the networked application plat-
form and its star player, Java, as we headed into the new year. Many of you have written
and put forward your own assessment of the Java movement as it rode into 1999, repre-
senting the fourth year of Java as a commercially available development platform.

This is the first installment of our theme “Java – Into Its 4th Year,” and we will review
the platform independence promise of the Java platform: run anywhere, anytime. It’s not
an all or nothing proposition.

Never has more hype surrounded a basic notion of platform independence as Java’s
“run anywhere, anytime” promise. This was particularly acute with Java on the client side
(in browsers). Unfortunately, Sun’s marketing messages were taken completely out of con-
text and Java developers assumed that any piece of compiled Java code would magically
run not only on all virtual machines and platforms, but in all circumstances as well. Why
would any experienced developer fall into such a predicament?

The marketing message should probably have been “Java, run anywhere, anytime –
with the appropriate amount of effort!” It’s certainly possible to create a Java client that
runs across the vast majority of possible client configurations. Creating a Java client that
runs across all possible client configurations is not significant, that is, it’s not necessary to
cover all permutations to achieve the desired effect. In other words, if out of 100,000 end
users 10 can’t access your Java client because they’re running OS/2 and the Navigator 2.0
browser, does that constitute a failure in deployment? I should say not.

A well-engineered Java client is extremely successful against a wide cross-section of
possible client configurations easily covering 90% of possible end users. Witness the
Yahoo! game site and its multiplayer Java games: chess, backgammon and checkers. The
Yahoo! games constituency runs across Macintosh, Windows and Solaris Workstations,
and various versions of browsers across each. Witness the PROGRESS Apptivity 3.0 Java
client that supports Netscape and the IE 3.x and 4.x browsers across all major OS plat-
forms. “Support” doesn’t translate into “works every time without any effort on your part”;
it translates into “will be portable with a reasonable amount of effort by the developer and
the vendor.”

On the server side, Java platform independence has received additional scrutiny. While
it’s clear that the UI layer presented the toughest platform challenges, the server side is
not immune from slight discrepancies in the JVM. The most important thing to remember
is that server-side processes, particularly those oriented at high-transaction business
functions, are very reliant on the robustness of the JVM implementation. A server process
with 1,200 threads and 1,500 object instantiations is no angel; it’s significantly dependent
on its Java container. Such a beast running on JVM 1.0.2 would most certainly come to a
crashing halt, while under JVM 1.2 it would most likely hold its own. It would perform even
better if such a complex process was abstracted on top of a competent CORBA infrastruc-
ture.

Once again, this shows the importance of layering the Java solution and insulating the
developer from the challenges faced in achieving platform independence and perfor-
mance. On the client side, the developer using a proven, supported Java client architec-
ture will achieve success far and above a counterpart creating the client from scratch. At
the very least, the Java client should take advantage of a foundation class such as
JFC/Swing, AFC or Netscape’s IFC. On the server side, the developer building on top of JDK
1.2, Corba and EJB will get to successful deployment and scalability while the developer
building from scratch will most likely never achieve deployment at any reasonable scale!

Java is heading into its fourth full year as a legitimate language and platform, and with
it, developers can achieve platform independence with a reasonable effort. How much
effort will be required to port an ActiveX control across Unix, Windows and Mac platforms?
How much effort will be required to port a significant C or C++ executable across these
platforms?

Platform independence is not an all or nothing proposition. It’s a question of practical-
ity, and a question of reasonable effort leading to significant value!

Java – Into Its 4th Year

by Java George

Java George is George Kassabgi, director of
developer relations for Progress Software’s
Apptivity Product Unit. You can e-mail him at
george@apptivity.com.

THE GRIND

“A well-engineered

Java client is

extremely successful

against a wide

cross-section of

possible client

configurations...”

george@apptivity.com

http://www.JavaDevelopersJournal.com 67Java DEVELOPER’S JournalVOLUME: 4 ISSUE:1 1999 •

ObjectSpace
www.objectspace.com

68 Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

KL Group
www.klg.com

• VOLUME: 4 ISSUE: 1 1999

